Human skull model with BioCer implant, which stimulates the regrowth of natural...
Human skull model with BioCer implant, which stimulates the regrowth of natural skull bone.
Source: Tidskriften PNAS

3D printed bioceramic implant induces cranial regrowth

A bioceramic implant has proved to stimulate regeneration of natural skull bone so that even large cranial defects can be repaired in a way that has not been possible before.

Reconstructing major bone and soft-tissue injuries in the skull after an accident or treatment of a brain tumor, blood clot, or hemorrhage is a difficult challenge. Worldwide, the routine clinical practice is to transplant bone, or use plastic or metal implants.

Transplanting bone from elsewhere in the body involves risks in both sites — where the tissue is removed and where it is placed. Integration of plastic or metal implants, for example, is inferior to that of bone, and using them therefore increases the infection risk. “Growth factors and stem cells are thought to contribute to healing but haven’t yet been demonstrated to have any obvious advantages after administration in large, human skull defects,” says Peter Thomsen, Professor of Biomaterials at the University of Gothenburg, who is responsible for the current stud

Seeing skull bone grow

Instead, under Thomsen’s guidance, researchers have used a new, 3D-printed bioceramic material, attached to a titanium frame shaped like the missing part of the skull bone. For the first time, they have shown that large cranial defects can heal by means of new bone formation, without growth factors or stem cells being added.

In the experiments, the bioceramic implant was shown to transform into bone, with a composition indistinguishable from natural bone. Experiments with titanium-only implants also resulted in bone formation, but only adjacent to the host bone. “We can see the skull bone growing out, not just on remaining parts of the cranium but also centrally in the defect itself,” Thomsen says. “All the cells that we know are involved in bone formation and remodeling are recruited to, or are in place, in the central part of the defect and in soft tissue where the bioceramic was inserted. What happens is that the main constituent of the bioceramic, monetite, transforms into another material in the body: apatite,” he adds.

Gradual breakdown

The experiments were performed on sheep, and the results could then be confirmed in humans, one individual, where the bioceramic, 21 months after the intervention, had become a tissue with structure and composition similar to natural bone. This process is called osteoinduction.

Behind the study are researchers at Sahlgrenska Academy, University of Gothenburg, and at Karolinska Institutet and Uppsala University. The first authors are Omar Omar, Associate Professor in Gothenburg, and Associate Professor Thomas Engstrand, Uppsala. Håkan Engqvist, Professor of Applied Materials Science in Uppsala, has been responsible for the development of the implanted material and its composition. He points out that the innovative bioceramic breaks down relatively slowly. “The combination of the ceramic’s composition and its slow breakdown has turned out to be extremely good for bone formation in large cranial defects.”

Peter Thomsen stresses the need for further research, both to investigate the molecular processes and in the form of additional clinical studies. “This principle will compete with existing treatment principles of bone transplantation, and plastic and metal implants,” he concludes.

The research was published in PNAS.

Subscribe to our newsletter

Related articles

Machine learning speeds up bioscaffold development

Machine learning speeds up bioscaffold development

A dose of artificial intelligence can speed the development of 3D-printed bioscaffolds that help injuries heal.

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

Lego-inspired 3D printed soft tissue bricks

Lego-inspired 3D printed soft tissue bricks

Researchers have developed a tiny, 3D-printed technology that can be assembled like Lego blocks and help repair broken bones and soft tissue.

Bioprinting tissues directly within the body

Bioprinting tissues directly within the body

Researchers take a step closer to 3D printing living tissues in patients as they develop a specially-formulated bio-ink designed for printing directly in the body.

3D printed rubbery brain implants

3D printed rubbery brain implants

Engineers are working on developing soft, flexible neural implants that can gently conform to the brain’s contours and monitor activity over longer periods.

3D printing strong and tough hydrogels

3D printing strong and tough hydrogels

Skin and cartilage are both strong and flexible – properties that are hard to replicate in artificial materials. But a new fabrication process brings lifelike synthetic polymers a step closer.

Using bacteria as micro-3D printers

Using bacteria as micro-3D printers

Researchers have used bacteria to produce intricately designed three-dimensional objects made of nanocellulose.

3D printing biomedical parts with supersonic speed

3D printing biomedical parts with supersonic speed

Researchers have developed a 3D printing technique that creates cellular metallic materials by smashing together powder particles at supersonic speed.

3D printed stents treat inflammation

3D printed stents treat inflammation

Researchers have produced biodegradable stents with esophageal-derived bioink to directly treat radiation esophagitis.

Popular articles