A prototype of a 3D-printed device with living cells that could help spinal...
A prototype of a 3D-printed device with living cells that could help spinal cord patients restore some function. The size of the device could be custom-printed to fit each patient’s spinal cord. The patient’s own cells would be printed on the guide to avoid rejection in the body.
Source: University of Minnesota

3D printed guide could help treat spinal cord injuries

A 3D-printed guide, made of silicone, serves as a platform for specialized cells that are then 3D printed on top of it. The guide would be surgically implanted into the injured area of the spinal cord where it would serve as a type of “bridge” between living nerve cells above and below the area of injury. The hope is that this would help patients alleviate pain as well as regain some functions like control of muscles, bowel and bladder.

“This is the first time anyone has been able to directly 3D print neuronal stem cells derived from adult human cells on a 3D-printed guide and have the cells differentiate into active nerve cells in the lab,” said Michael McAlpine, Ph.D., University of Minnesota Benjamin Mayhugh Associate Professor of Mechanical Engineering in the University’s College of Science and Engineering.

“This is a very exciting first step in developing a treatment to help people with spinal cord injuries,” said Ann Parr, M.D., Ph.D., University of Minnesota Medical School Assistant Professor in the Department of Neurosurgery and Stem Cell Institute. “Currently, there aren’t any good, precise treatments for those with long-term spinal cord injuries.”

Photo
his color-enhanced image shows living cells that survived the 3D-printing process. Neuronal stem cells derived from adult human cells were 3-D printed on a guide and the cells differentiated into active nerve cells in the lab.
Source: University of Minnesota

In this new process developed at the University of Minnesota over the last two years, researchers start with any kind of cell from an adult, such as a skin cell or blood cell. Using new bioengineering techniques, the medical researchers are able to reprogram the cells into neuronal stem cells. The engineers print these cells onto a silicone guide using a unique 3D-printing technology in which the same 3D printer is used to print both the guide and the cells. The guide keeps the cells alive and allows them to change into neurons. The team developed a prototype guide that would be surgically implanted into the damaged part of the spinal cord and help connect living cells on each side of the injury. “Everything came together at the right time,” Parr said. “We were able to use the latest cell bioengineering techniques developed in just the last few years and combine that with cutting-edge 3D-printing techniques.”

Even with the latest technology, developing the prototype guides wasn’t easy. “3D printing such delicate cells was very difficult,” McAlpine said. “The hard part is keeping the cells happy and alive. We tested several different recipes in the printing process. The fact that we were able to keep about 75 percent of the cells alive during the 3D-printing process and then have them turn into healthy neurons is pretty amazing.”

If the next steps are successful, the payoff for this research could be life-changing for those who suffer from spinal cord injuries. “We’ve found that relaying any signals across the injury could improve functions for the patients,” Parr said. “There’s a perception that people with spinal cord injuries will only be happy if they can walk again. In reality, most want simple things like bladder control or to be able to stop uncontrollable movements of their legs. These simple improvements in function could greatly improve their lives.”

Subscribe to our newsletter

Related articles

3D printed artery monitors blockages from the inside

3D printed artery monitors blockages from the inside

Engineers are developing a 3D printed artificial blood vessel that allows doctors and patients to keep tabs on its health remotely.

Pectus Excavatum: 3D printed scaffold implanted

Pectus Excavatum: 3D printed scaffold implanted

Surgeons have implanted a patient suffering from a congenital defect with a novel, absorbable soft tissue reconstruction scaffold.

Bioprinting tissues directly within the body

Bioprinting tissues directly within the body

Researchers take a step closer to 3D printing living tissues in patients as they develop a specially-formulated bio-ink designed for printing directly in the body.

World first in 3D printed self-expandable stents

World first in 3D printed self-expandable stents

Researchers from CSIRO have made it possible to 3D print tailor-made stents, a critical biomedical device used to treat narrow or blocked arteries.

3D printing patient-specific implants

3D printing patient-specific implants

Researchers have developed a personalized therapeutic concept that significantly reduces the chances of a patient suffering post-operative complications.

The role of surgical 3D printing in hospitals

The role of surgical 3D printing in hospitals

More and more hospitals are entering the world of 3D printing in surgery as decision-makers and surgeons are realising the immense benefits for surgeons and patients alike.

Groundwork for patient-specific 3D printed meniscus

Groundwork for patient-specific 3D printed meniscus

Researchers have developed a novel methodology to provide non-invasive analysis of meniscal implants.

Grow a better jawbone in your ribs

Grow a better jawbone in your ribs

Engineers have developed a technique to grow live bone to repair craniofacial injuries by attaching a 3D-printed bioreactor.

3D printing helps surgeons rebuild patients’ faces

3D printing helps surgeons rebuild patients’ faces

Scientists are using 3D technology to help rebuild the faces of cancer patients, those hurt in accidents and people born with complex facial deformities.

Popular articles