3D printed hydrogels to be used in cancer immunotherapy

The new 3D hydrogels provide high rates of cell proliferation, as they mimic lymph nodes, where T-cells reproduce in vivo. A new project, led by researchers from ICMAB and IBEC, and with the collaboration of VHIO and UIC, wants to transfer this technology to hospitals.

Photo
Initial prototype of a hydrogel scaffold manufactured with a 3D printer.
Source: ICMAB-CSIC; IBEC.

A team with the participation of researchers from the ICMAB has designed new hydrogels that allow the culture of T-cells or T-lymphocytes, cells of the immune system that are used in cancer immunotherapy since they have the capacity to destroy tumor cells. These hydrogels can mimic lymph nodes, where T-cells reproduce and, therefore, provide high rates of cell proliferation. Scientists hope to be able to bring this new technology, for which a patent has already been filed at the European Patent Office, to hospitals soon. Scientists have started a project that aims to print these new hydrogels in 3D and thus accelerate their transfer to the market.

The 3D hydrogels are made of polyethylene glycol (PEG), a biocompatible polymer widely used in biomedicine, and heparin, an anticoagulant agent. In this case, the polymer provides the structure and mechanical properties necessary for T-cells to grow, while heparin is used to anchor different biomolecules of interest, such as cytokine CCL21, a protein present in the lymph nodes and which has a major role in cell migration and proliferation.

Adoptive cell therapy

Cancer immunotherapy is based on using and strengthening the patients' immune system so that it recognizes and fights tumor cells, without damaging healthy tissues. One of the possible treatments, the so-called adoptive cell therapy, consists of extracting the T-cells from the patients, modifying them to make them more active, making numerous copies of them and injecting them back into patients.

"This personalized therapy, although still very novel, seems to have more lasting effects than current oncological therapies, thanks to some T-lymphocytes that are capable of conferring immunity over time," points out one of the creators of this technology, researcher Judith Guasch, from the Institute of Materials Science of Barcelona (ICMAB-CSIC). "Its application is limited by the current cell culture media, since they are not effective enough for the proliferation and growth of a relevant amount of therapeutic T-cells in a short time and in an economically viable way", adds Guasch.

Transfer to the market

Photo
Simplified diagram showing the process of adoptive cell therapy: extraction of cells, expansion and differentiation, and injection of cells into patients
Source: Biomaterials (259, 120313, 2020)

To continue the study and encourage the transfer of this technology to the market, researchers Judith Guasch, from the ICMAB, and Elisabeth Engel, professor at the Polytechnic University of Catalonia (UPC) at the Institute of Bioengineering of Catalonia (IBEC), have recently been awarded a project from the Call for Transfer and Valorization Projects of the Biomedical Research Networking Center - Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) 2020, aimed at carrying out projects for CIBER-BBN groups with the interest and support of companies.

The aim of the project is to print large 3D hydrogels compatible with clinical bioreactors, in order to expand T-cells in a more efficient way. The researchers will develop the prototype in the laboratory and make the first experiments for the validation in the clinical phase. Currently, the project is looking for industrial partners, mainly biomedical and pharmaceutical companies, and investors interested in creating a spin-off company to transfer this technology and make it available in hospitals.

The details are published in the journal Biomaterials.

Subscribe to our newsletter

Related articles

Understanding the utility of plasmas

Understanding the utility of plasmas

Researchers aim to better explain the way plasmas interact with biological materials to help pave the way for plasma use in wound healing and cancer therapy.

3D printing strong and tough hydrogels

3D printing strong and tough hydrogels

Skin and cartilage are both strong and flexible – properties that are hard to replicate in artificial materials. But a new fabrication process brings lifelike synthetic polymers a step closer.

3D printed stents treat inflammation

3D printed stents treat inflammation

Researchers have produced biodegradable stents with esophageal-derived bioink to directly treat radiation esophagitis.

Silk improves bioink for artificial organs

Silk improves bioink for artificial organs

Researchers mechanically reprocess silk into a biologically compatible component of bioinks that improves the structural fidelity of 3D-printed hydrogels containing cells for use in drug development and regrowing lost or damaged body

The heat is on for building 3D artificial organ tissues

The heat is on for building 3D artificial organ tissues

Radiator-like fluid systems adjust the genetic wiring inside human liver cells in preliminary work toward artificial organ-tissue engineering.

Bioprinting tiny, functional organs

Bioprinting tiny, functional organs

Researchers have developed an approach to print tiny tissues that look and function almost like their full-sized counterpart.

Endoscopic robotic system used for treating cancer

Endoscopic robotic system used for treating cancer

Researchers have developed an robotic system to enhance the safety and efficacy of endoscopic submucosal dissection (ESD) for the treatment of gastrointestinal cancer.

Melanoma: patch may be a treatment option

Melanoma: patch may be a treatment option

Scientists at Purdue University have developed a skin patch that can deliver chemotherapy into melanoma tumors in an effective and painless way.

Lung cancer: AI could predict risk of recurrence

Lung cancer: AI could predict risk of recurrence

Computer scientists working with pathologists have trained an AI tool to determine which patients with lung cancer have a higher risk of their disease coming back after treatment.

Popular articles