3D printed implant promotes nerve cell growth

For the first time, researchers at University of California San Diego School of Medicine and Institute of Engineering in Medicine have used rapid 3D printing technologies to create a spinal cord, then successfully implanted that scaffolding, loaded with neural stem cells, into sites of severe spinal cord injury in rats.

Photo
A 3D printed, two-millimeter implant (slightly larger than the thickness of a penny) used as scaffolding to repair spinal cord injuries in rats. The dots surrounding the H-shaped core are hollow portals through which implanted neural stem cells can extend axons into host tissues.
Source: Jacob Koffler and Wei Zhu, UC San Diego

The implants are intended to promote nerve growth across spinal cord injuries, restoring connections and lost function. In rat models, the scaffolds supported tissue regrowth, stem cell survival and expansion of neural stem cell axons out of the scaffolding and into the host spinal cord. “In recent years and papers, we’ve progressively moved closer to the goal of abundant, long-distance regeneration of injured axons in spinal cord injury, which is fundamental to any true restoration of physical function,” said co-senior author Mark Tuszynski, MD, PhD, professor of neuroscience and director of the Translational Neuroscience Institute at UC San Diego School of Medicine. Axons are the long, threadlike extensions on nerve cells that reach out to connect to other cells. “The new work puts us even closer to real thing,” added co-first author Kobi Koffler, PhD, assistant project scientist in Tuszynski’s lab, “because the 3D scaffolding recapitulates the slender, bundled arrays of axons in the spinal cord. It helps organize regenerating axons to replicate the anatomy of the pre-injured spinal cord.”

Co-senior author Shaochen Chen, PhD, professor of nanoengineering and a faculty member in the Institute of Engineering in Medicine at UC San Diego, and colleagues used rapid 3D printing technology to create a scaffold that mimics central nervous system structures. “Like a bridge, it aligns regenerating axons from one end of the spinal cord injury to the other. Axons by themselves can diffuse and regrow in any direction, but the scaffold keeps axons in order, guiding them to grow in the right direction to complete the spinal cord connection,” Chen said.

Faster, more precise printing

The implants contain dozens of tiny, 200-micrometer-wide channels (twice the width of a human hair) that guide neural stem cell and axon growth along the length of the spinal cord injury. The printing technology used by Chen’s team produces two-millimeter-sized implants in 1.6 seconds. Traditional nozzle printers take several hours to produce much simpler structures.

The process is scalable to human spinal cord sizes. As proof of concept, researchers printed four-centimeter-sized implants modeled from MRI scans of actual human spinal cord injuries. These were printed within 10 minutes. “This shows the flexibility of our 3D printing technology,” said co-first author Wei Zhu, PhD, nanoengineering postdoctoral fellow in Chen’s group. “We can quickly print out an implant that’s just right to match the injured site of the host spinal cord regardless of the size and shape.”

Researchers grafted the two-millimeter implants, loaded with neural stem cells, into sites of severe spinal cord injury in rats. After a few months, new spinal cord tissue had regrown completely across the injury and connected the severed ends of the host spinal cord. Treated rats regained significant functional motor improvement in their hind legs. “This marks another key step toward conducting clinical trials to repair spinal cord injuries in people,” Koffler said. “The scaffolding provides a stable, physical structure that supports consistent engraftment and survival of neural stem cells. It seems to shield grafted stem cells from the often toxic, inflammatory environment of a spinal cord injury and helps guide axons through the lesion site completely.”

Additionally, the circulatory systems of the treated rats had penetrated inside the implants to form functioning networks of blood vessels, which helped the neural stem cells survive. “Vascularization is one of the main obstacles in engineering tissue implants that can last in the body for a long time,” Zhu said. “3D printed tissues need vasculature to get enough nutrition and discharge waste. Our group has done work on 3D printed blood vessel networks before, but we didn’t include it in this work. Biology just naturally takes care of it for us due to the excellent biocompatibility of our 3D scaffolds.”

Subscribe to our newsletter

Related articles

3D printed oesophageal stents to revolutionize cancer treatment

3D printed oesophageal stents to revolutionize cancer treatment

World-first 3D printed oesophageal stents developed by the University of South Australia could revolutionize the delivery of chemotherapy drugs.

3D-printed bioresorbable airway stent

3D-printed bioresorbable airway stent

Researchers are using 3D printing to produce a new type of bioresorbable airway stent. This could greatly simplify the future treatment of upper airway obstruction.

3D printed copper components for linear accelerators

3D printed copper components for linear accelerators

For the first time, researchers have 3D printed essential quadrupole components for linear accelerators from pure copper.

Aerogel: the micro structural material of the future

Aerogel: the micro structural material of the future

Scientists from Empa were able to 3D print stable well-shaped microstructures made from silica aerogels for use in biotechnology and precision engineering.

3D printable biomaterial for personalised medicine

3D printable biomaterial for personalised medicine

Marc Knebel, head of Medical Systems at Evonik, explains the benefits and applications of the new high-performance polymer VESTAKEEP Care M40 3DF.

Insulin-producing implant for diabetics

Insulin-producing implant for diabetics

Bioengineers are using 3D printing and smart biomaterials to create an insulin-producing implant for type 1 diabetes patients.

3D printed knee implant for arthritis sufferers

3D printed knee implant for arthritis sufferers

A groundbreaking new treatment that uses 3D printed implants and that could bring relief to tens of thousands of knee osteoarthritis sufferers has received approval to be trialled in UK patients.

Self-powered implant stimulates fast bone healing

Self-powered implant stimulates fast bone healing

Reseachers have developed a self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing.

Controlling the performance of 3D printed implants

Controlling the performance of 3D printed implants

In order to quickly customize implants with complex structures, scientists use 3D printing technology to prepare Ti-Mo alloy implants, and then adjust the microstructure and performance through subsequent heat treatment.

Popular articles

Subscribe to Newsletter