Three-dimensional imaging on the left shows how bone, in green, replaced the...
Three-dimensional imaging on the left shows how bone, in green, replaced the bioactive ceramic scaffold, in purple, over a six-month period. Microscope images on the right show progressively increasing degrees of bone, stained pink, and lower amount of scaffold, in black, as time goes by in the body.
Source: Journal of Tissue Engineering and Regenerative Medicine

3D printed implants help to regrow bone

Researchers at NYU have developed 3D-printed ceramic implants that dissolves slowly, allowing bone to grow in their place. The implants can be tailored to mimic the shape of the missing bone, and are chemically-coated to stimulate bone growth. The research team hopes that the technology will be useful for patients with non-healing bone defects.

Modeled after the bone pieces they are meant to help replace, the implants were assembled onsite using 3D robotic printing, a technology that uses a fine-point print head to push out a gel-like ink material. The material is printed onto a platform, and the printer repeats the process until 2D layers stack up into a 3D object, which is then superheated into its final ceramic form. Available for more than a decade, the technology has only of late been applied in medicine to print out replacement ears, skin, and heart valves.

“Our 3D scaffold represents the best implant in development because of its ability to regenerate real bone,” says study senior investigator and biomedical engineer Paulo Coelho, Dr. Leonard I. Linkow Professor at NYU Dentistry and a professor in the Hansjörg Wyss Department of Plastic Surgery at NYU Langone Health. “Our latest study results move us closer to clinical trials and potential bone implants for children living with skull deformations since birth, as well as for veterans seeking to repair damaged limbs,” adds Coelho.

The scientists say their novel ceramics more closely resemble real bone shape and composition than other experimental bone implants in which plastic elasticizers are added to make the implant flex. Although the ability to flex offers some advantages, the plastic does not have the same healing ability as NYU’s scaffold.

An important feature of the ceramic devices is that they are made of beta tricalcium phosphate, a compound of the same chemicals found in natural bone that makes the implants resorbable. The ceramic implants contain beta tricalcium phosphate, which is similar to components in natural bone, making the implants resorbable over time. They are also coated in dipyridamole, a blood thinning agent that stimulates bone growth and attracts bone stem cells to the implant. “Dipyridamole has proven to be key to the implant’s success,” says study co-investigator Bruce N. Cronstein, the Dr. Paul R. Esserman Professor of Medicine at NYU School of Medicine, who perfected the drug’s use during device testing. Used for more than a half-century to prevent blood clots and treat stroke, dipyridamole has a long-standing safety record, says Cronstein. “And because the implant is gradually resorbed, the drug is released a little at a time and locally into the bone, not into the whole body, thereby minimizing risks of abnormal bone growth, bleeding, or other side effects.”

Subscribe to our newsletter

Related articles

3D printing congress: AM Medical Days 2021

3D printing congress: AM Medical Days 2021

The first edition of the new conference series AM Medical Days 2021 starts with the focus on "Medical AM: How to apply it to patients?".

Aerogel: the micro structural material of the future

Aerogel: the micro structural material of the future

Scientists from Empa were able to 3D print stable well-shaped microstructures made from silica aerogels for use in biotechnology and precision engineering.

Novel method of bioprinting neuron cells

Novel method of bioprinting neuron cells

The researchers have use a new laser-assisted technology that maintains high levels of cell viability and functionality.

3D-printed cardiac patches for cardiovascular diseases

3D-printed cardiac patches for cardiovascular diseases

Bioprinted 3D cardiac patches could reverse scar formation and promote myocardial regeneration after heart attacks.

Research programme to bioprint ear and noses launched

Research programme to bioprint ear and noses launched

The Scar Free Foundation has launched a research programme that aims to revolutionise surgeons’ ability to reconstruct nose and ear cartilage in patients affected by facial difference.

Reverse 3D printing to make tiny implants

Reverse 3D printing to make tiny implants

Researchers have developed a 3D printing technique that allows them to create incredibly small and complex biomedical implants.

Imaging technique to improve bioprinted implants

Imaging technique to improve bioprinted implants

Scientists have developed a new microscopic imaging approach to take a closer look at 3D printing for developing future patient implants, as well as improved disease modelling and drug screening.

3D biocomposites can repair large bone defects

3D biocomposites can repair large bone defects

Loosening hip implants can cause major damage to the bone and a simple replacement won’t suffice to carry the load during movements. Researchers have turned to bioprinting to solve this problem.

Bioprinting mini pancreas to fight against diabetes

Bioprinting mini pancreas to fight against diabetes

EPFL spin-off Readily3D has developed a novel system that can print biological tissue in just 30 seconds.

Popular articles

Subscribe to Newsletter