3D printed material mimics biological tissues

3D printed material mimics biological tissues

Researchers at the University of Colorado Denver have developed a method to 3D print liquid crystal elastomers so that they form complex structures with physical properties that match those of complex biological tissues, such as cartilage.

Biological tissues have evolved over millennia to be perfectly optimized for their specific functions. Take cartilage as an example. It’s a compliant, elastic tissue that’s soft enough to cushion joints, but strong enough to resist compression and withstand the substantial load bearing of our bodies: key for running, jumping, and our daily wear and tear.

Creating synthetic replacements which truly match the properties and behaviors of biological tissues hasn’t been easy. But University of Colorado Denver scientists, led by mechanical engineer professor Chris Yakacki, PhD, are the first to 3D print a complex, porous lattice structure using liquid crystal elastomers (LCEs) creating devices that can finally mimic cartilage and other biological tissues. The CU Denver team, including professor Kai Yu, PhD, postdoctoral fellow Devesh Mistry, PhD, and doctoral student Nicholas Traugutt, as well as scientists from the Southern University of Science and Technology in China.

Revolution in the manufacturing of LCEs

Yakacki, who works out of CU Denver’s Smart Materials and Biomechanics (SMAB) Lab, began working with LCEs in 2012. The soft, multifunctional materials are known for their elasticity and extraordinary ability to dissipate high energy. In 2018, Yakacki received an NSF CAREER award to revolutionize the manufacturability of LCEs and several rounds of funding to develop them as a shock absorber for football helmets. Even then, he knew its applications could go further. “Everyone’s heard of liquid crystals because you stare at them in your phone display,” says Yakacki. “And you’ve likely heard of liquid crystal polymers because that’s exactly what Kevlar is. Our challenge was to get them into soft polymers, like elastomers, to use them as shock absorbers. That’s when you go down the layers of complexity.”

LCEs are tricky to manipulate. Until now, most researchers could create either large objects with minimal detail or high detail in practically microscopic structures. But as with phone screens, big devices with high resolutions are where the future lies. Yakacki and his team’s chemicals and printing process took the difficulty down to nearly zero.

Their motivation: dissipation controlled across length scales from the resin...
Their motivation: dissipation controlled across length scales from the resin chemistry (mesoscale), to the microscale lattice architecture, and the overall macrostructure of printed structures.
Source: University of Colorado Denver

Shining a light on honey-like resin

For their study, Yakacki and his team explored a 3D printing process called digital light processing (DLP). The team developed a honey-like LC resin that, when hit with ultraviolet light, cures—forming new bonds in a succession of thin photopolymer layers. The final cured resin forms a soft, strong, and compliant elastomer. When printed in lattice structures—levels of patterning akin to a honeycomb—that’s when it began to mimic cartilage.

The group printed several structures, including a tiny, detailed lotus flower and a prototype of a spinal fusion cage, creating the largest LCE device with the most detail. The combination of the resin and printing process also led to 12 times greater rate-dependence and up to 27 times greater strain–energy dissipation compared to those printed from a commercially available photocurable elastomer resin.

Going forward, the structures have several applications, like shock absorbing football helmet foam or even small biomedical implants for toes. Yakacki is most excited about its possibilities in the spine. “The spine is full of challenges and it’s a hard problem to solve,” said Yakacki. “People have tried making synthetic spinal tissue discs and they haven’t done a good job of it. With 3D printing, and the high resolution we’ve gotten from it, you can match a person’s anatomy exactly. One day, we may be able to grow cells to fix the spine, but for now, we can take a step forward with the next generation of materials. That’s where we’d like to go.”

Subscribe to our newsletter

Related articles

Lego-inspired 3D printed soft tissue bricks

Lego-inspired 3D printed soft tissue bricks

Researchers have developed a tiny, 3D-printed technology that can be assembled like Lego blocks and help repair broken bones and soft tissue.

Sugar: Sweet way to 3D print blood vessels

Sugar: Sweet way to 3D print blood vessels

Scientists have developed a way of using laser-sintering of powdered sugars to produce highly detailed structures that mimick the body’s intricate, branching blood vessels in lab-grown tissues.

Researchers successfully bioprint healthy new tissue

Researchers successfully bioprint healthy new tissue

New muscle has successfully been created in mice using a minimally invasive technique dubbed ‘intravital 3D bioprinting’.

Printable rubber-like material could replace human tissue

Printable rubber-like material could replace human tissue

Researchers have created a material with a unique set of properties, which could act as a replacement for human tissue in medical procedures.

Producing human tissue in space

Producing human tissue in space

The University of Zurich has sent adult human stem cells to the International Space Station to explore the production of human tissue in weightlessness.

Bioprinting complex living tissue in seconds

Bioprinting complex living tissue in seconds

Researchers have developed an extremely fast optical method for sculpting complex shapes in stem-cell-laden hydrogels and then vascularizing the resulting tissue.

Silicone-based 3D lattice can improve drug testing

Silicone-based 3D lattice can improve drug testing

Scientists have found the perfect geometry: on a newly developed 3D silicone lattice, human stem cells will grow and behave in the same way as they do inside the human body.

3D printing skin, bones on way to Mars

3D printing skin, bones on way to Mars

An ESA project has produced its first bioprinted skin and bone samples. The 3D printing human tissue could help keep astronauts healthy all the way to Mars.

3D printing of biological tissue

3D printing of biological tissue

Scientists hope we will soon be using 3D-printed biologically functional tissue to replace irreparably damaged tissue in the body.

Popular articles