3D printed placenta-on-a-chip created in the laboratory

Researchers at the TU Vienna have created a placenta-on-a-chip microfluidic device which uses a femtosecond laser-based 3D-printing method to create a customized hydrogel membrane.

Photo
The bio-chip: this is where the placenta can be studied and analysed.
Source: TU Vienna

This means it is now possible to provide clarity in some vital research issues, such as the exchange of glucose between mother and child. “The transport of substances through biological membranes plays an important role in various areas of medicine”, says Prof. Aleksandr Ovsianikov of the Institute of Materials Science and Technology at TU Vienna. “These include the blood-brain barrier, ingestion of food in the stomach and intestine, and also the placenta.”

There are, for example, numerous studies showing that diseases in the mother such as diabetes can have an impact on the unborn child. High blood pressure can also affect the transport of substances to the foetus. Until now, however, it has been almost impossible to investigate the way in which the many parameters involved interact in such cases.

Special chip

Photo
iny structures made of bio-compatible material in the 3D-printer
Source: TU Vienna

The researchers are therefore working on replicating organ structures on compact chips in order to investigate important aspects of their function under controlled conditions. “Our chip consists of two areas – one represents the foetus, the other the mother”, explains Denise Mandt, who worked on the project as part of her thesis. “We use a special 3D printing process to produce a partition between them – the artificial placenta membrane.”

TU Vienna has been working on high-resolution 3D printing of this kind for years, with great success: it involves the use of materials which can be solidified with the help of laser beams. This allows the desired 3D structures to be created point by point with a resolution in the micrometre range. “In our case it involves a hydrogel with good biocompatibility”, Aleksandr Ovsianikov explains. “Based on the model of the natural placenta, we produce a surface with small, curved villi. The placenta cells can then colonise it, creating a barrier very similar to the natural placenta.”

The organ-on-a-chip

“This ‘organ-on-a-chip’ technology is a revolutionary approach in biomedicine, which has generated a great deal of interest in clinical diagnostics, biotechnology and pharmaceutics in recent years”, says Prof. Peter Ertl, head of the cell chip research group which played a key role in the project. “The creation of human mini organs on a chip should allow the development of patient-specific therapeutic approaches, and also represents a vital method for replacing animal experiments.”

On the chip, important biological parameters can be closely monitored, such as the pressure, temperature, geometry and nutrient supply of the mini organs, as well as the administration of medications. This makes it possible to accurately observe disease progression and cure rates.

Initial tests have already shown that the artificial placenta on the chip does in fact behave in a similar way to a natural placenta: small molecules are allowed to pass through, while large ones are held back. The model is now intended to be used specifically to investigate important aspects of nutrient transport from the mother to the foetus.

Subscribe to our newsletter

Related articles

3D printing of biological tissue

3D printing of biological tissue

Scientists hope we will soon be using 3D-printed biologically functional tissue to replace irreparably damaged tissue in the body.

Rapid 3D printing moves toward bioprinted organs

Rapid 3D printing moves toward bioprinted organs

Researchers are using a 3D printing method called stereolithography and jelly-like materials known as hydrogels to speed up and improve 3D printing.

Silk improves bioink for artificial organs

Silk improves bioink for artificial organs

Researchers mechanically reprocess silk into a biologically compatible component of bioinks that improves the structural fidelity of 3D-printed hydrogels containing cells for use in drug development and regrowing lost or damaged body

The heat is on for building 3D artificial organ tissues

The heat is on for building 3D artificial organ tissues

Radiator-like fluid systems adjust the genetic wiring inside human liver cells in preliminary work toward artificial organ-tissue engineering.

Bioprinting tiny, functional organs

Bioprinting tiny, functional organs

Researchers have developed an approach to print tiny tissues that look and function almost like their full-sized counterpart.

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

3D printing heart cells from stem cells

3D printing heart cells from stem cells

Scientists have shown that 3D printing can be used to control stem cell differentiation into embryoid bodies that replicate heart cells.

Sugar: Sweet way to 3D print blood vessels

Sugar: Sweet way to 3D print blood vessels

Scientists have developed a way of using laser-sintering of powdered sugars to produce highly detailed structures that mimick the body’s intricate, branching blood vessels in lab-grown tissues.

A swifter way towards 3D printed organs

A swifter way towards 3D printed organs

A new technique called SWIFT (sacrificial writing into functional tissue) allows 3D printing of large, vascularized human organ building blocks.

Popular articles

Subscribe to Newsletter