3D printed training device for cervical cancer screening

A team of Rice University students hopes a device they developed to train doctors and nurses in developing countries and low-resource areas in the U.S. to prevent and treat cervical cancer will improve the outlook for women with this disease. Cervical cancer kills close to 300,000 women per year worldwide, with approximately 85 percent of these deaths occurring in developing countries.

Photo

Rice students Christine Luk, Elizabeth Stone and Rachel Lambert are senior design students enrolled in the course Global Health Design. Together with graduate student Sonia Parra, they developed a low-cost, interactive training model that mimics a woman’s pelvic region and can be used to practice different cervical cancer screening and treatment procedures. The training model, which was developed at Rice’s Oshman Engineering Design Kitchen (OEDK) and was based on models developed by other teams of students over the past few years (including Christine Diaz ’17, current Rice students Caroline Brigham, Theresa Sonka and Karen Vasquez, and Malawi Polytechnic students Waheed Mia and Mary Mnewa) was created in collaboration with the Rice 360° Institute for Global Health and the University of Texas MD Anderson Cancer Center.

“More than 90 percent of cervical cancer cases are preventable,” Stone said. “Prevention is accomplished through screening and, if necessary, treatment. This device is specifically designed so health care providers in developing countries and low-resource regions — many of whom lack gynecological training — learn to screen for and treat cervical cancer.”

“The main reason for this is because these countries are not able to implement the standard of care,” Parra said. “And many times it’s also due to the lack of training for providers to learn standard cervical cancer screening and prevention skills needed in order to screen and provide prevention services for the entire population.”

Stone said these procedures can be dangerous when performed without proper training, so it’s not ideal for physicians not trained in gynecological care to practice the skills on a person. “This is why the device is necessary and has such potential to save lives,” she said.

Photo
From left: Christine Luk, Rachel Lambert, Sonia Parra and Elizabeth Stone.
Source: Rice University

The device includes different cervix models that are 3-D printed to mimic human ones that are normal, have precancer or have evidence of cancer. The model cervixes fit into a holder that attaches to the back of the device. Once clipped into place, the holder can be adjusted to simulate the different positions of a human cervix. The models can easily be switched around during training to mimic different conditions encountered in a gynecologist’s office and can be viewed after the speculum is inserted. In addition, the model cervixes can be dabbed with hot water (in a clinical setting, doctors use acetic acid) to mimic the appearance of precancerous lesions doctors might see in a clinical setting.

The device also includes model cervixes made of a ballistic gel that can be used to train health care professionals to perform several procedures: colposcopy, which is a method of examining the cervix, vagina and vulva when results of a Pap smear, the screening test used to identify abnormal cervical cells, are unusual; cervical biopsy; cryotherapy, which uses freezing gas to destroy precancerous cells on the cervix; and loop electrosurgical excision procedure, known as LEEP, during which a small electrical wire loop is used to remove abnormal cells from the cervix. The gel allows trainees to practice these procedures at a low cost. “Here in the states we have the ability to perform Pap smears and other practices, but in other countries where this model is used, such as Mozambique and El Salvador, they may not have the necessary infrastructure to do so,” Luk said. “That’s why it’s important that this model can train as many procedures as possible.”

Since developing the device, the students have used it in training clinics in El Salvador and the Rio Grande Valley in Texas. Each training session is modified to fit the specific needs of an area.

Lambert said the doctors attending these sessions have expressed interest in acquiring their own devices to continue training. Some have even tried to create their own models. In the future, the team hopes to work with a manufacturer to mass-produce the devices for areas in need so newly trained medical providers can train others.

Subscribe to our newsletter

Related articles

3D printed copper components for linear accelerators

3D printed copper components for linear accelerators

For the first time, researchers have 3D printed essential quadrupole components for linear accelerators from pure copper.

Researchers use bioprinting to create nose cartilage

Researchers use bioprinting to create nose cartilage

Researchers have used 3D bioprinting technology to create custom-shaped cartilage. They aim to make it easier for surgeons to safely restore the features of skin cancer patients living with nasal cartilage defects after surgery.

Advanced tech enables simulated sinus surgery

Advanced tech enables simulated sinus surgery

The world’s first international online training session utilizing advanced 3D sinus models and a telemedicine system has taken place.

3D printed oesophageal stents to revolutionize cancer treatment

3D printed oesophageal stents to revolutionize cancer treatment

World-first 3D printed oesophageal stents developed by the University of South Australia could revolutionize the delivery of chemotherapy drugs.

3D printing resins in dental devices may be toxic

3D printing resins in dental devices may be toxic

Two commercially available 3D-printable resins, which are marketed as being biocompatible for use in dental applications, readily leach compounds into their surroundings.

3D printed stents treat inflammation

3D printed stents treat inflammation

Researchers have produced biodegradable stents with esophageal-derived bioink to directly treat radiation esophagitis.

3D printed hydrogels to be used in cancer immunotherapy

3D printed hydrogels to be used in cancer immunotherapy

The new 3D hydrogels provide high rates of cell proliferation, as they mimic lymph nodes, where T-cells reproduce in vivo.

3D printing of silicone components

3D printing of silicone components

Spectroplast has developed a method to make silicone products such as hearing aids, breast prosthesis for breast cancer patients using a 3D printer.

3D printing magnetic liquid droplets

3D printing magnetic liquid droplets

Revolutionary material could lead to 3D-printable magnetic liquid devices for the fabrication of artificial cells that deliver targeted drug therapies to diseased cells.

Popular articles

Subscribe to Newsletter