University of Utah biomedical engineering assistant professor Robby Bowles and...
University of Utah biomedical engineering assistant professor Robby Bowles and his team have developed a method to 3D print cells to produce human tissue such as ligaments and tendons to greatly improve a patient's recovery.
Source: Dan Hixson/University of Utah College of Engineering

3D printing cells to produce human tissue

Engineers have developed a method to 3D print cells to produce human tissue such as ligaments and tendons, a process that will greatly improve a patient's recovery.

With today’s technology, we can 3D print sculptures, mechanical parts, prosthetics, even guns and food. But a team of University of Utah biomedical engineers have developed a method to 3D print cells to produce human tissue such as ligaments and tendons, a process that will greatly improve a patient’s recovery. A person with a badly damaged ligament, tendon, or ruptured disc could simply have new replacement tissue printed and ultimately implanted in the damaged area. “It will allow patients to receive replacement tissues without additional surgeries and without having to harvest tissue from other sites, which has its own source of problems,” says University of Utah biomedical engineering assistant professor Robby Bowles, who co-authored the paper along with former U biomedical engineering master’s student, David Ede.

The 3D printing method, which took two years to research, involves taking stem cells from the patient’s own body fat and printing them on a layer of hydrogel to form a tendon or ligament which would later grow in vitro in a culture before being implanted. But it’s an extremely complicated process because that kind of connective tissue is made up of different cells in complex patterns. For example, cells that make up the tendon or ligament must then gradually shift to bone cells so the tissue can attach to the bone. “This is a technique in a very controlled manner to create a pattern and organizations of cells that you couldn’t create with previous technologies,” Bowles says of the printing process. “It allows us to very specifically put cells where we want them.”

Photo
This image of cells that were made fluorescent shows how they are printed in complex structures for the purpose of producing tissue such as tendons and ligaments.
Source: Robby Bowles/ University of Utah College of Engineering.

To do that, Bowles and his team worked with Salt Lake City-based company, Carterra, Inc., which develops microfluidic devices for medicine. Researchers used a 3D printer from Carterra typically used to print antibodies for cancer screening applications. But Bowles’ team developed a special printhead for the printer that can lay down human cells in the controlled manner they require. To prove the concept, the team printed out genetically-modified cells that glow a fluorescent color so they can visualize the final product.

Currently, replacement tissue for patients can be harvested from another part of the patient’s body or sometimes from a cadaver, but they may be of poor quality. Spinal discs are complicated structures with bony interfaces that must be recreated to be successfully transplanted. This 3D-printing technique can solve those problems.

Bowles, who specializes in musculoskeletal research, said the technology currently is designed for creating ligaments, tendons and spinal discs, but “it literally could be used for any type of tissue engineering application,” he says. It also could be applied to the 3D printing of whole organs, an idea researchers have been studying for years. Bowles also says the technology in the printhead could be adapted for any kind of 3D printer.

Subscribe to our newsletter

Related articles

A 3D printer ceates complex biological tissues

A 3D printer ceates complex biological tissues

A technique that uses a specially adapted 3D printer to build therapeutic biomaterials from multiple materials could help advance regenerative medicine.

Bioprinted heart provides new tool for surgeons

Bioprinted heart provides new tool for surgeons

Surgeons will soon have a powerful new tool for planning and practice with the creation of the first full-sized 3D bioprinted model of the human heart.

Silk improves bioink for artificial organs

Silk improves bioink for artificial organs

Researchers mechanically reprocess silk into a biologically compatible component of bioinks that improves the structural fidelity of 3D-printed hydrogels containing cells for use in drug development and regrowing lost or damaged body

The heat is on for building 3D artificial organ tissues

The heat is on for building 3D artificial organ tissues

Radiator-like fluid systems adjust the genetic wiring inside human liver cells in preliminary work toward artificial organ-tissue engineering.

Bioprinting tissues directly within the body

Bioprinting tissues directly within the body

Researchers take a step closer to 3D printing living tissues in patients as they develop a specially-formulated bio-ink designed for printing directly in the body.

Lab engineers 3D functional bone tissues

Lab engineers 3D functional bone tissues

Researchers have developed a printable bioink that could be used to create anatomical-scale functional tissues.

Bioprinting complex living tissue in seconds

Bioprinting complex living tissue in seconds

Researchers have developed an extremely fast optical method for sculpting complex shapes in stem-cell-laden hydrogels and then vascularizing the resulting tissue.

Organ bioprinting gets a breath of fresh air

Organ bioprinting gets a breath of fresh air

Bioengineers have cleared a major hurdle on the path to 3D printing replacement organs with a breakthrough technique for bioprinting tissues.

3D printing of biological tissue

3D printing of biological tissue

Scientists hope we will soon be using 3D-printed biologically functional tissue to replace irreparably damaged tissue in the body.

Popular articles

Subscribe to Newsletter