Artificial embryoid bodies with different characteristics which were made using...
Artificial embryoid bodies with different characteristics which were made using 3D printing.
Source: SUTD

3D printing heart cells from stem cells

Scientists at Singapore University of Technology and Design (SUTD) have shown that 3D printing can be used to control stem cell differentiation into embryoid bodies that replicate heart cells.

All humans start out from a single cell which then divides to eventually form the embryo. Depending on the signals sent by their adjacent cells, these divided cells are then developed or differentiated into specific tissues or organs. In regenerative medicine, controlling that differentiation in the lab is crucial as stem cells could be differentiated to allow for the growing of organs in vitro and replace damaged adult cells, particularly those with very limited abilities to replicate, such as the brain or heart.

One common approach scientists adopt when differentiating stem cells is by using chemical stimulators. While this method is very efficient to make one single type of cells, it lacks the ability to reproduce the complexity of living organisms, where several cell types coexist and collaborate to form an organ.

Alternatively, inspired by the natural process of cell development, another method involves the packing of stem cells into small cellular aggregates, or spheres called embryoid bodies. Similar to real embryos, the cell-cell interaction in embryoid bodies is the main driver of differentiation. From the production of these embryoid bodies, it was found that parameters such as cell numbers, size, and sphericity of the embryoid body influenced the types of cells that are produced.

However, since scientists have not been able to control those parameters, they have had to laboriously produce large numbers of embryoid bodies and select specific ones with suitable characteristics to be studied. To address this challenge, researchers from SUTD turned to additive manufacturing to control stem cell differentiation in embryoid bodies. 

Adopting a multidisciplinary approach by combining the research domains of 3D manufacturing and life sciences, Ph.D. student Rupambika Das and Assistant Professor Javier G. Fernandez 3D printed several micro-scaled physical devices with finely tuned geometries. They used the devices to demonstrate unprecedented precision in the directed differentiation of stem cells through the formation of embryoid bodies (refer to image). In their study, they successfully regulated the parameters for enhancing the production of cardiomyocytes, cells which are found in the heart.

"The field of additive manufacturing is evolving at an unrivaled pace. We are seeing levels of precision, speed and cost that were inconceivable just a few years ago. What we have demonstrated is that 3D printing has now reached the point of geometrical accuracy where it is able to control the outcome of stem cell differentiation. And in doing so, we are propelling regenerative medicine to further advance alongside the accelerated rate of the additive manufacturing industry," said principal investigator Fernandez.

"The use of 3D printing in biology has been strongly focused on the printing of artificial tissues using cell laden cells, to build artificial organs 'piece by piece'. Now, we have demonstrated that 3D printing has the potential for it to be used in a bio-inspired approach in which we can control cells to grow in a lab just as they grow in vivo," added first author Das, Ph.D.

Their research study was published in Bioprinting.

Subscribe to our newsletter

Related articles

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

Bioprinted heart provides new tool for surgeons

Bioprinted heart provides new tool for surgeons

Surgeons will soon have a powerful new tool for planning and practice with the creation of the first full-sized 3D bioprinted model of the human heart.

Silk improves bioink for artificial organs

Silk improves bioink for artificial organs

Researchers mechanically reprocess silk into a biologically compatible component of bioinks that improves the structural fidelity of 3D-printed hydrogels containing cells for use in drug development and regrowing lost or damaged body

The heat is on for building 3D artificial organ tissues

The heat is on for building 3D artificial organ tissues

Radiator-like fluid systems adjust the genetic wiring inside human liver cells in preliminary work toward artificial organ-tissue engineering.

Bioprinting tiny, functional organs

Bioprinting tiny, functional organs

Researchers have developed an approach to print tiny tissues that look and function almost like their full-sized counterpart.

Sugar: Sweet way to 3D print blood vessels

Sugar: Sweet way to 3D print blood vessels

Scientists have developed a way of using laser-sintering of powdered sugars to produce highly detailed structures that mimick the body’s intricate, branching blood vessels in lab-grown tissues.

A swifter way towards 3D printed organs

A swifter way towards 3D printed organs

A new technique called SWIFT (sacrificial writing into functional tissue) allows 3D printing of large, vascularized human organ building blocks.

Can bioprinted stem-cell tissue be used to treat kidney disease?

Can bioprinted stem-cell tissue be used to treat kidney disease?

Researchers have announced a collaboration to 3D bioprint stem-cell tissue that could one day be used to treat end-stage kidney disease.

Using bacteria as micro-3D printers

Using bacteria as micro-3D printers

Researchers have used bacteria to produce intricately designed three-dimensional objects made of nanocellulose.

Popular articles