The glove of the soft robot hand are made using Spectroplasts silicone printing...
The glove of the soft robot hand are made using Spectroplast's silicone printing process.
Source: Andreas Eggenberger / ETH Zurich

3D printing of silicone components

Spectroplast has developed a method to make silicone products using a 3D printer. The young company now plans to bring to market customised medical products such as hearing aids, breast prosthesis for breast cancer patients and eventually even artificial heart valves.

Their ultimate goal is to save lives: the founders of the ETH spin-off Spectroplast, Manuel Schaffner and Petar Stefanov, have developed a novel 3D printing process capable of making biocompatible silicone parts. “In the long term we hope to use the technology to offer medical implants,” says Schaffner, the young company’s CEO. “And not in standard sizes, as is the case with conventional off-the-shelf products, but customised to fit the individual patient perfectly.”

Until now, additive manufacturing has traditionally produced objects made of hard materials such as metal, ceramic, or plastic. On the other hand, soft elastic silicone is still being used exclusively with injection moulding, where different elements of the composite material are fused together at extremely high temperatures of around 300 degrees. Schaffner’s doctoral research came up with a novel method that makes it possible to create soft silicone parts with a 3D printer. He is naturally reluctant to go into more detail, for fear of encouraging copycat product

Customised parts at the push of a button

3D printing has two major advantages over the traditional injection moulding process: on the one hand this high-precision method is able to produce very complex shapes for the first time. ETH researchers recently used the new method to produce artificial heart valves made of silicone. On the other hand, it makes production simpler and cheaper, as no moulds are required: everything happens at the touch of a button. This paves the way for mass production of customised components.

Even so, it will take a few years before the young company is able to market artificial heart valves or implants created by 3D printing, as the relevant regulatory and approval processes for medical devices are very complex and time-consuming. This is why the company will initially concentrate on what Schaffner calls “life-improving” rather than “life-saving” products. Silicone components therefore make sense wherever customised parts are especially beneficial, such as hearing aids or breast prosthesis. “Women who have had a breast removed due to cancer, for example, often face the fate of only being able to choose from standardised breast prosthesis,” Schaffner explains. “So some even ask for the other breast to be removed and replaced with an identically shaped prosthesis, purely for the sake of symmetry.” One solution to this predicament would be to create a template on the computer with the help of an MRI or CT scan, providing a perfectly shaped model ready for 3D printing.

The joint founders of Spectroplast know each other from their time at ETH. Having completed his doctorate in interdisciplinary natural sciences at the Department of Materials, Manuel Schaffner was looking for an engineer for his project, and Petar Stefanov applied. At the time Stefanov was studying electrical engineering and information technology at ETH and was also interested in additive manufacturing. “While experimenting with plastic shapes, we found there is much greater interest in the market for 3D printing of silicone parts,” Schaffner explains. And so the pair decided to set up a new company to meet this demand.

Subscribe to our newsletter

Related articles

Artificial pericardial tissue from the 3D printer

Artificial pericardial tissue from the 3D printer

In the PolyKARD project, biomimetic polymers are being developed that can imitate the mechanical properties of pericardial tissue.

Bioengineering living heart valves

Bioengineering living heart valves

Reserchers have made progress developing living heart valves that can grow with the body and integrate with the patient's native tissue.

3D printed airway stents approved by FDA

3D printed airway stents approved by FDA

The patient-specific stents developed at Cleveland Clinic are designed using CT scans and proprietary 3D visualization software.

3D-printed device exposes cancer cells

3D-printed device exposes cancer cells

A 3D-printed cell trap developed in the laboratory at Georgia Tech captures blood cells to isolate tumor cells from a blood sample.

A swifter way towards 3D printed organs

A swifter way towards 3D printed organs

A new technique called SWIFT (sacrificial writing into functional tissue) allows 3D printing of large, vascularized human organ building blocks.

4D printing the world’s smallest stent

4D printing the world’s smallest stent

Researchers have developed a new method for producing malleable microstructures – for instance, vascular stents that are 40 times smaller than previously possible.

One step closer to bioprinting the human heart

One step closer to bioprinting the human heart

Researchers have developed a technique to 3D bioprint collagen, allowing them to fabricate fully functional components of the human heart.

3D printed silicone heart valves

3D printed silicone heart valves

3D printed custom-made artificial heart valves from silicone could help meet an ageing population’s growing demand for replacement heart valves.

3D printing magnetic liquid droplets

3D printing magnetic liquid droplets

Revolutionary material could lead to 3D-printable magnetic liquid devices for the fabrication of artificial cells that deliver targeted drug therapies to diseased cells.

Popular articles