The glove of the soft robot hand are made using Spectroplasts silicone printing...
The glove of the soft robot hand are made using Spectroplast's silicone printing process.
Source: Andreas Eggenberger / ETH Zurich

3D printing of silicone components

Spectroplast has developed a method to make silicone products using a 3D printer. The young company now plans to bring to market customised medical products such as hearing aids, breast prosthesis for breast cancer patients and eventually even artificial heart valves.

Their ultimate goal is to save lives: the founders of the ETH spin-off Spectroplast, Manuel Schaffner and Petar Stefanov, have developed a novel 3D printing process capable of making biocompatible silicone parts. “In the long term we hope to use the technology to offer medical implants,” says Schaffner, the young company’s CEO. “And not in standard sizes, as is the case with conventional off-the-shelf products, but customised to fit the individual patient perfectly.”

Until now, additive manufacturing has traditionally produced objects made of hard materials such as metal, ceramic, or plastic. On the other hand, soft elastic silicone is still being used exclusively with injection moulding, where different elements of the composite material are fused together at extremely high temperatures of around 300 degrees. Schaffner’s doctoral research came up with a novel method that makes it possible to create soft silicone parts with a 3D printer. He is naturally reluctant to go into more detail, for fear of encouraging copycat product

Customised parts at the push of a button

3D printing has two major advantages over the traditional injection moulding process: on the one hand this high-precision method is able to produce very complex shapes for the first time. ETH researchers recently used the new method to produce artificial heart valves made of silicone. On the other hand, it makes production simpler and cheaper, as no moulds are required: everything happens at the touch of a button. This paves the way for mass production of customised components.

Even so, it will take a few years before the young company is able to market artificial heart valves or implants created by 3D printing, as the relevant regulatory and approval processes for medical devices are very complex and time-consuming. This is why the company will initially concentrate on what Schaffner calls “life-improving” rather than “life-saving” products. Silicone components therefore make sense wherever customised parts are especially beneficial, such as hearing aids or breast prosthesis. “Women who have had a breast removed due to cancer, for example, often face the fate of only being able to choose from standardised breast prosthesis,” Schaffner explains. “So some even ask for the other breast to be removed and replaced with an identically shaped prosthesis, purely for the sake of symmetry.” One solution to this predicament would be to create a template on the computer with the help of an MRI or CT scan, providing a perfectly shaped model ready for 3D printing.

The joint founders of Spectroplast know each other from their time at ETH. Having completed his doctorate in interdisciplinary natural sciences at the Department of Materials, Manuel Schaffner was looking for an engineer for his project, and Petar Stefanov applied. At the time Stefanov was studying electrical engineering and information technology at ETH and was also interested in additive manufacturing. “While experimenting with plastic shapes, we found there is much greater interest in the market for 3D printing of silicone parts,” Schaffner explains. And so the pair decided to set up a new company to meet this demand.

Subscribe to our newsletter

Related articles

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

3D printed hydrogels to be used in cancer immunotherapy

3D printed hydrogels to be used in cancer immunotherapy

The new 3D hydrogels provide high rates of cell proliferation, as they mimic lymph nodes, where T-cells reproduce in vivo.

3D printed lifelike heart valve models

3D printed lifelike heart valve models

Researchers have developed a groundbreaking process for multi-material 3D printing of lifelike models of the heart's aortic valve and the surrounding structures.

3D printing heart cells from stem cells

3D printing heart cells from stem cells

Scientists have shown that 3D printing can be used to control stem cell differentiation into embryoid bodies that replicate heart cells.

Using 3D printing to study common heart defect

Using 3D printing to study common heart defect

Researchers have combined machine learning, 3D printing and high performance computing simulations to accurately model blood flow in the aorta.

3D printed artery monitors blockages from the inside

3D printed artery monitors blockages from the inside

Engineers are developing a 3D printed artificial blood vessel that allows doctors and patients to keep tabs on its health remotely.

World’s smallest 3D printed endoscope

World’s smallest 3D printed endoscope

Researchers have used 3D micro-printing to develop the world’s smallest, flexible scope for looking inside blood vessels.

Scientists 3D print a working heart pump

Scientists 3D print a working heart pump

Researchers have 3D printed a functioning centimeter-scale heart pump with real human cells in the lab.

A 3D printed bluetooth enabled stethoscope

A 3D printed bluetooth enabled stethoscope

The digital stethoscope that makes it possible to listen to the heart and lungs of their patients while standing up to 50 feet away.

Popular articles