This microneedle array has backward-facing barbs that interlock with tissue...
This microneedle array has backward-facing barbs that interlock with tissue when inserted, enhancing adhesion.
Source: Riddish Morde

4D printed tiny needles that could replace hypodermic needles

Rutgers University have devised a way to integrate microneedles with backward facing barbs, so that microneedle arrays can stay in place as long as needed.

Painful hypodermic needles may not be needed in the future to give shots, inject drugs and get blood samples. With 4D printing, Rutgers engineers have created tiny needles that mimic parasites that attach to skin and could replace hypodermic needles.

While 3D printing builds objects layer by layer, 4D goes further with smart materials that are programmed to change shape after printing. Time is the fourth dimension that allows materials to morph into new shapes. “We think our 4D printed microneedle array will allow for more robust and sustained use of minimally invasive, pain-free and easy-to-use microneedles for delivering drugs, healing wounds, biosensing and other soft tissue applications,” said senior author Howon Lee, an assistant professor in the Department of Mechanical and Aerospace Engineering in the School of Engineering at Rutgers University–New Brunswick.

Hypodermic needles are widely used in hospitals and labs to extract blood and inject drugs, causing pain, scarring skin and posing an infection risk. People with diabetes often take blood samples multiple times a day with needles to monitor blood sugar levels.

Microneedles (miniaturized needles) are gaining attention because they are short, thin and minimally invasive, reduce pain and the risk of infection and are easy-to-use. But their weak adhesion to tissues is a major challenge for controlled drug delivery over the long run or for biosensing, which involves using a device to detect DNA, enzymes, antibodies and other health indicators.

In nature, some insects and other organisms have developed microscopic features that adhere to tissue, such as the microhooks of parasites, barbed stingers of honeybees and scaled quills of porcupines. Inspired by these examples, Rutgers engineers developed a microneedle that interlocks with tissue when inserted, enhancing adhesion. They combined a micro 3D printing technique and a 4D printing approach to create backward-facing barbs on a microneedle.

Using chicken muscle tissue as a model, the researchers showed that tissue adhesion with their microneedle is 18 times stronger than with a barbless microneedle. Their creation outperforms previously reported examples, resulting in more stable and robust drug delivery, collection of bio-fluids and biosensing, the study says.

Subscribe to our newsletter

Related articles

Superior bio-ink for 3D printing pioneered

Superior bio-ink for 3D printing pioneered

Engineers have developed a “bio-ink” for 3D printed materials that could serve as scaffolds for growing human tissues to repair or replace damaged ones in the body.

Artificial pericardial tissue from the 3D printer

Artificial pericardial tissue from the 3D printer

In the PolyKARD project, biomimetic polymers are being developed that can imitate the mechanical properties of pericardial tissue.

Lab engineers 3D functional bone tissues

Lab engineers 3D functional bone tissues

Researchers have developed a printable bioink that could be used to create anatomical-scale functional tissues.

The role of surgical 3D printing in hospitals

The role of surgical 3D printing in hospitals

More and more hospitals are entering the world of 3D printing in surgery as decision-makers and surgeons are realising the immense benefits for surgeons and patients alike.

Device could support multiple COVID-19 patients from one ventilator

Device could support multiple COVID-19 patients from one ventilator

3D printing fuels efforts to rapidly increase ventilator capacity while providing each patient on vent support with individually tailored gas pressures and pressure monitoring.

Bringing magnetic resonance to fertility treatment

Bringing magnetic resonance to fertility treatment

EPFL spin-off Annaida is developing a magnetic resonance system that can detect the chemistry inside the tiniest living organisms.

A 3D-printed diffuser to treat COVID-19 patients

A 3D-printed diffuser to treat COVID-19 patients

Scientists have delivered more than 200 3D-printed diffusers for metered dose inhalers (MDI) to the Houston hospital and stands ready to produce more if needed.

Engineers develop 3D printed ventilator splitters

Engineers develop 3D printed ventilator splitters

The prototype was developed in response to the urgent need for more ventilators to treat patients with acute respiratory distress syndrome caused by COVID-19.

3D printed rubbery brain implants

3D printed rubbery brain implants

Engineers are working on developing soft, flexible neural implants that can gently conform to the brain’s contours and monitor activity over longer periods.

Popular articles