A graphic shows the process by which a Rice University lab uses 3D printing to...
A graphic shows the process by which a Rice University lab uses 3D printing to make shapeshifting materials that may be useful to make soft robots or as biomedical implants.
Source: Courtesy of the Verduzco Laboratory

4D printing soft objects for implants

Soft robots and biomedical implants that reconfigure themselves upon demand are closer to reality with a new way to print shapeshifting materials. Rafael Verduzco and graduate student Morgan Barnes of Rice’s Brown School of Engineering developed a method to print objects that can be manipulated to take on alternate forms when exposed to changes in temperature, electric current or stress.

The researchers think of this as reactive 4D printing. They first reported their ability to make morphing structures in a mold in 2018. But using the same chemistry for 3D printing limited structures to shapes that sat in the same plane. That meant no bumps or other complex curvatures could be programmed as the alternate shape.

Overcoming that limitation to decouple the printing process from shaping is a significant step toward more useful materials, Verduzco said. “These materials, once fabricated, will change shape autonomously,” Verduzco said. “We needed a method to control and define this shape change. Our simple idea was to use multiple reactions in sequence to print the material and then dictate how it would change shape. Rather than trying to do this all in one step, our approach gives more flexibility in controlling the initial and final shapes and also allows us to print complex structures.”

The lab’s challenge was to create a liquid crystal polymer “ink” that incorporates mutually exclusive sets of chemical links between molecules. One establishes the original printed shape, and the other can be set by physically manipulating the printed-and-dried material. Curing the alternate form under ultraviolet light locks in those links.

Once the two programmed forms are set, the material can then morph back and forth when, for instance, it’s heated or cooled. The researchers had to find a polymer mix that could be printed in a catalyst bath and still hold its original programmed shape. “There were a lot of parameters we had to optimize — from the solvents and catalyst used, to degree of swelling, and ink formula — to allow the ink to solidify rapidly enough to print while not inhibiting the desired final shape actuation,” Barnes said.

One remaining limitation of the process is the ability to print unsupported structures, like columns. To do so would require a solution that gels just enough to support itself during printing, she said. Gaining that ability will allow researchers to print far more complex combinations of shapes. “Future work will further optimize the printing formula and use scaffold-assisted printing techniques to create actuators that transition between two different complex shapes,” Barnes said. “This opens the door to printing soft robotics that could swim like a jellyfish, jump like a cricket or transport liquids like the heart.”

Subscribe to our newsletter

Related articles

Aerogel: the micro structural material of the future

Aerogel: the micro structural material of the future

Researchers have now succeeded in making aerogels accessible to microelectronics and precision engineering.

Prostheses could alleviate amputees' phantom limb pain

Prostheses could alleviate amputees' phantom limb pain

New prosthetic technologies that stimulate the nerves could pave the way for prostheses that feel like a natural part of the body and reduce the phantom limb pain commonly endured by amputees.

Integrate micro chips for electronic skin

Integrate micro chips for electronic skin

First fully integrated flexible electronics made of magnetic sensors and organic circuits opens the path towards the development of electronic skin.

Implants: reconfigurable electronics promise innovations

Implants: reconfigurable electronics promise innovations

Medical implants of the future may feature reconfigurable electronic platforms that can morph in shape and size dynamically.

Prosthetics: sensors implanted for wireless control of muscle signal

Prosthetics: sensors implanted for wireless control of muscle signal

Researchers have successfully implanted sensors in three male patients following nerve transfers, to transmit biosignals for wireless control of robotic arms.

A mind-controlled robotic arm without brain implants

A mind-controlled robotic arm without brain implants

Researchers show that by using a noninvasive brain-computer interface they could control a robotic arm that’s tracking a cursor on a computer screen.

First sentient hand prosthesis implanted

First sentient hand prosthesis implanted

A female Swedish patient with hand amputation has become the first recipient of an osseo-neuromuscular implant to control a dexterous hand prosthesis.

Endoscopic robotic system used for treating cancer

Endoscopic robotic system used for treating cancer

Researchers have developed an robotic system to enhance the safety and efficacy of endoscopic submucosal dissection (ESD) for the treatment of gastrointestinal cancer.

Bionics open eyes to a frontier in vision restoration

Bionics open eyes to a frontier in vision restoration

Researchers have developed a revolutionary cortical vision device that could one day help restore vision to the blind.

Popular articles