Bioengineering living heart valves

Researchers at Qatar University, in collaboration with Imperial College London, Biostage, Inc. in the U.S., and the American University of Beirut, Lebanon, have made progress developing living heart valves that can grow with the body and integrate with the patient's native tissue.

Photo
The 3-D heart valve scaffold is injected with cardiac stem cells.
Source: Qatar University

The team generated the heart valves using a combination of nanotechnology, 3D printing and tissue engineering, which involves recently developed techniques to grow living cells into functional tissues or organs. Tissue engineering has already been used to successfully develop human skin and bladders. "Biologically engineered organs and tissues are in high demand, especially due to an enormous shortage of organ donors," says Anwarul Hasan, an engineer and principal investigator at Qatar University.

The need for heart valves is particularly high: heart valve diseases are one of the most common reasons for cardiac failure. Every year, more than 90,000 people require heart valve replacements in the U.S. alone. About 25,000 deaths in the U.S. and 3% of sudden deaths in the European Union occur annually because of cardiac valve defects. These numbers are expected to triple in the next 50 years due to an aging population.

Biologically engineered heart valves overcome some of the problems associated with mechanical and bioprosthetic valves, the two main options currently available for heart valve replacements. Mechanical valves, which are often made from metal, require patients to take blood thinning agents for the rest of their lives, while bioprosthetics, made from animal tissue, have a limited life span and must be replaced after 10 to 20 years. Both types of valve are unable to grow with time, meaning young patients may have to undergo several valve replacement operations during their lifetime. "Bioengineered tissue valves will last longer, be adopted by the body without rejection, and grow with the patient's growth," says Hasan.

To bioengineer heart valves, the team first made a 3D scaffold shaped like a heart valve, using a special nano-fiber-based biomaterial that is strong, flexible and biodegradable. Then they injected the scaffold with living cardiac stem cells and cultured it in a tissue incubator. The cells grew and multiplied over a period of 15 days, gradually and partially replacing the scaffold, which slowly degraded. This process is expected to continue inside the body after implantation, until the valve is fully integrated with the patient's native tissue.

The researchers developed a novel method for simulating a cardiac system, which allowed them to test how the engineered valves affected blood flow. The results showed that the tissue engineered heart valves mimicked the functions of natural heart valves, opening and closing effectively at speeds and pressures similar to commercially available heart valves.

The tissue engineered heart valves have only been tested in the lab so far. The team next plans to test the valves in living animals under various conditions to assess if they can be safely investigated for humans. For example, longer-term experiments are needed to fully understand the degradation and cell growth process inside the body.

Subscribe to our newsletter

Related articles

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

One step closer to bioprinting the human heart

One step closer to bioprinting the human heart

Researchers have developed a technique to 3D bioprint collagen, allowing them to fabricate fully functional components of the human heart.

Nano-thin piezoelectrics advance wearables

Nano-thin piezoelectrics advance wearables

A new type of ultra-efficient, nano-thin material could advance self-powered electronics, wearable technologies and even deliver pacemakers powered by heart beats.

Aerogel: the micro structural material of the future

Aerogel: the micro structural material of the future

In a research-first, scientists from Empa were able to 3D print stable well-shaped microstructures made from silica aerogels for use in biotechnology and precision engineering.

A 3D printed device to excite nerves

A 3D printed device to excite nerves

A tiny, thin-film electrode with a 3D-printed housing has been implanted in the peripheral nervous system of songbirds, where it successfully recorded electrical impulses that drive vocalizations.

3D printing heart cells from stem cells

3D printing heart cells from stem cells

Scientists have shown that 3D printing can be used to control stem cell differentiation into embryoid bodies that replicate heart cells.

Lego-inspired 3D printed soft tissue bricks

Lego-inspired 3D printed soft tissue bricks

Researchers have developed a tiny, 3D-printed technology that can be assembled like Lego blocks and help repair broken bones and soft tissue.

Sugar: Sweet way to 3D print blood vessels

Sugar: Sweet way to 3D print blood vessels

Scientists have developed a way of using laser-sintering of powdered sugars to produce highly detailed structures that mimick the body’s intricate, branching blood vessels in lab-grown tissues.

Printable rubber-like material could replace human tissue

Printable rubber-like material could replace human tissue

Researchers have created a material with a unique set of properties, which could act as a replacement for human tissue in medical procedures.

Popular articles

Photo

3D printed ultra-low-cost hearing aid

Using a device that could be built with a dollar's worth of open-source parts and a 3D-printed case, researchers want to help the hundreds of millions of older people worldwide who can't afford existing hearing aids to address their age-related hearing loss.