A 3D bioprinted heart model developed by Adam Feinberg and his team.
A 3D bioprinted heart model developed by Adam Feinberg and his team.
Source: Carnegie Mellon University College of Engineering

Bioprinted heart provides new tool for surgeons

Surgeons will soon have a powerful new tool for planning and practice with the creation of the first full-sized 3D bioprinted model of the human heart.

Professor of Biomedical Engineering Adam Feinberg and his team have created the first full-size 3D bioprinted human heart model using their Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technique. The model, created from MRI data using a specially built 3D printer, realistically mimics the elasticity of cardiac tissue and sutures. This milestone represents the culmination of two years of research, holding both immediate promise for surgeons and clinicians, as well as long term implications for the future of bioengineered organ research.

The FRESH technique of 3D bioprinting was invented in Feinberg’s lab to fill an unfilled demand for 3D printed soft polymers, which lack the rigidity to stand unsupported as in a normal print. FRESH 3D printing uses a needle to inject bioink into a bath of soft hydrogel, which supports the object as it prints. Once finished, a simple application of heat causes the hydrogel to melt away, leaving only the 3D bioprinted object.

A needle prints the alginate into a hydrogel bath, which is later melted away...
A needle prints the alginate into a hydrogel bath, which is later melted away to leave the finished model.
Source: Carnegie Mellon University College of Engineering

While Feinberg has proven both the versatility and the fidelity of the FRESH technique, the major obstacle to achieving this milestone was printing a human heart at full scale. This necessitated the building of a new 3D printer custom made to hold a gel support bath large enough to print at the desired size, as well as minor software changes to maintain the speed and fidelity of the print.

Modeling incorporates imaging data into the final 3D printed object.
Modeling incorporates imaging data into the final 3D printed object.
Source: Carnegie Mellon University College of Engineering

Major hospitals often have facilities for 3D printing models of a patient’s body to help surgeons educate patients and plan for the actual procedure; however, these tissues and organs can only be modeled in hard plastic or rubber. Feinberg’s team’s heart is made from a soft, natural polymer called alginate, giving it properties similar to real cardiac tissue. For surgeons, this enables the creation of models that can cut, suture, and be manipulated in ways similar to a real heart. Feinberg’s immediate goal is to begin working with surgeons and clinicians to fine tune their technique and ensure it’s ready for the hospital setting.

This paper represents another important marker on the long path to bioengineering a functional human organ. Soft, biocompatible scaffolds like that created by Feinberg’s group may one day provide the structure onto which cells adhere and form an organ system, placing biomedicine one step closer to the ability to repair or replace full human organs.

“While major hurdles still exist in bioprinting a full-sized functional human heart, we are proud to help establish its foundational groundwork using the FRESH platform while showing immediate applications for realistic surgical simulation,” added Eman Mirdamadi, lead author on the publication.

The research was published in ACS Biomaterials Science and Engineering.

Subscribe to our newsletter

Related articles

Printable biosensors could make surgery safer

Printable biosensors could make surgery safer

Researchers have developed fully printable biosensor made of soft bio-inks interfaces with a pig heart.

A 'FRESH' way to bioprint tissues and organs

A 'FRESH' way to bioprint tissues and organs

A bioprinting method enables advanced tissue fabrication by using a yield-stress support bath that holds bioinks in place until they are cured and works with a wide array of bioinks.

Silk improves bioink for artificial organs

Silk improves bioink for artificial organs

Researchers mechanically reprocess silk into a biologically compatible component of bioinks that improves the structural fidelity of 3D-printed hydrogels containing cells for use in drug development and regrowing lost or damaged body

The heat is on for building 3D artificial organ tissues

The heat is on for building 3D artificial organ tissues

Radiator-like fluid systems adjust the genetic wiring inside human liver cells in preliminary work toward artificial organ-tissue engineering.

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

3D printed lifelike heart valve models

3D printed lifelike heart valve models

Researchers have developed a groundbreaking process for multi-material 3D printing of lifelike models of the heart's aortic valve and the surrounding structures.

3D printing heart cells from stem cells

3D printing heart cells from stem cells

Scientists have shown that 3D printing can be used to control stem cell differentiation into embryoid bodies that replicate heart cells.

Researchers successfully bioprint healthy new tissue

Researchers successfully bioprint healthy new tissue

New muscle has successfully been created in mice using a minimally invasive technique dubbed ‘intravital 3D bioprinting’.

A swifter way towards 3D printed organs

A swifter way towards 3D printed organs

A new technique called SWIFT (sacrificial writing into functional tissue) allows 3D printing of large, vascularized human organ building blocks.

Popular articles

Subscribe to Newsletter