Engineers have developed 3D printed implants that can be used to link brains to...
Engineers have developed 3D printed implants that can be used to link brains to computers.
Source: University of Sheffield

Brains linked to computers using 3D printed implants

Linking the human brain to a computer is usually only seen in science fiction, but now an international team of engineers and neuroscientists at the University of Sheffield, St Petersburg State University and Technische Universität Dresden have harnessed the power of 3D printing to bring the technology one step closer to reality.

The team led by Professor Ivan Minev (Department of Automatic Control and Systems Engineering, Sheffield) and Professor Pavel Musienko (St Petersburg State University), have developed a prototype neural implant that could be used to develop treatments for problems in the nervous system.

The neural implant has been used to stimulate the spinal cord of animal models with spinal cord injuries and now could be used to develop new treatments for human patients with paralysis. The proof of concept technology has been shown in the study to also fit well on the surface of a brain, spinal cord, peripheral nerves and muscles, hence opening possibilities in other neurological conditions.

Linking the human brain to a computer via a neural interface is an ambition for many researchers throughout the worlds of science, technology and medicine, with recent stories in the media highlighting efforts to develop the technology. However, innovation in the field is hampered by the huge costs and long development time it takes to produce prototypes - which are needed for exploring new treatments.

The technology promises great potential to bring new medical treatments for injuries to the nervous system based on a fusion of biology and electronics. The vision relies on implants that can sense and supply tiny electrical impulses in the brain and the nervous system.

The team has shown how 3D printing can be used to make prototype implants much quickier and in a more cost effective way in order to speed up research and development in the area. The implants can be easily adapted to target specific areas or problems within the nervous system.

System could one day enable neurosurgeons to 3D print an implant in the...
System could one day enable neurosurgeons to 3D print an implant in the operating theatre while their patient is being prepped for surgery.
Source: University of Sheffield

Using the new technique, a neuroscientist can order a design which the engineering team can transform into a computer model which feeds instructions to the printer. The printer then applies a palette of biocompatible, mechanically soft materials to realise the design. The implant can be quickly amended if changes are required, giving neuroscientists a quicker and cheaper way to test their ideas for potential treatments.

Ivan Minev, Professor of Intelligent Healthcare Technologies at the University of Sheffield’s Department of Automatic Control and Systems Engineering, said: “The research we have started at TU Dresden and continuing here at Sheffield has demonstrated how 3D printing can be harnessed to produce prototype implants at a speed and cost that hasn’t been done before, all whilst maintaining the standards needed to develop a useful device. The power of 3D printing means the prototype implants can be quickly changed and reproduced again as needed to help drive forward research and innovation in neural interfaces.”

The researchers have shown that 3D printers can produce implants that can communicate with brains and nerves. Following this early work, the team aims to demonstrate how the devices are robust when implanted for long periods of time.

The team’s ambition, however, is to go to the clinic and open up the possibilities of personalised medicine to neurosurgeons. Professor Minev added: “Patients have different anatomies and the implant has to be adapted to this and their particular clinical need. Maybe in the future the implant will be printed directly in the operating theatre while the patient is being prepared for surgery.”

The study was published in Nature Biomedical Engineering.

Subscribe to our newsletter

Related articles

A 3D printed device to excite nerves

A 3D printed device to excite nerves

A tiny, thin-film electrode with a 3D-printed housing has been implanted in the peripheral nervous system of songbirds, where it successfully recorded electrical impulses that drive vocalizations.

The role of surgical 3D printing in hospitals

The role of surgical 3D printing in hospitals

More and more hospitals are entering the world of 3D printing in surgery as decision-makers and surgeons are realising the immense benefits for surgeons and patients alike.

3D printed artery monitors blockages from the inside

3D printed artery monitors blockages from the inside

Engineers are developing a 3D printed artificial blood vessel that allows doctors and patients to keep tabs on its health remotely.

Pectus Excavatum: 3D printed scaffold implanted

Pectus Excavatum: 3D printed scaffold implanted

Surgeons have implanted a patient suffering from a congenital defect with a novel, absorbable soft tissue reconstruction scaffold.

Bioprinting tissues directly within the body

Bioprinting tissues directly within the body

Researchers take a step closer to 3D printing living tissues in patients as they develop a specially-formulated bio-ink designed for printing directly in the body.

World first in 3D printed self-expandable stents

World first in 3D printed self-expandable stents

Researchers from CSIRO have made it possible to 3D print tailor-made stents, a critical biomedical device used to treat narrow or blocked arteries.

3D printing patient-specific implants

3D printing patient-specific implants

Researchers have developed a personalized therapeutic concept that significantly reduces the chances of a patient suffering post-operative complications.

Groundwork for patient-specific 3D printed meniscus

Groundwork for patient-specific 3D printed meniscus

Researchers have developed a novel methodology to provide non-invasive analysis of meniscal implants.

Grow a better jawbone in your ribs

Grow a better jawbone in your ribs

Engineers have developed a technique to grow live bone to repair craniofacial injuries by attaching a 3D-printed bioreactor.

Popular articles