First ever biomimetic tongue surface printed
Source: University of Leeds

First ever biomimetic tongue surface printed

Scientists have created synthetic soft surfaces with tongue-like textures for the first time using 3D printing. This opens new possibilities for testing oral processing properties of food, nutritional technologies, pharmaceutics and dry mouth therapies.

UK scientists led by the University of Leeds in collaboration with the University of Edinburgh have replicated the highly sophisticated surface design of a human tongue and demonstrated that their printed synthetic silicone structure mimics the topology, elasticity and wettability of the tongue’s surface. These factors are instrumental to how food or saliva interacts with the tongue, which in turn can affect mouthfeel, swallowing, speech, nutritional intake and quality of life.

Particularly, since the onset of the COVID-19 pandemic, social distancing has posed significant challenges to carry out such sensory trials and consumer tests. A biomimetic tongue will be immensely helpful to increase development productivity and reducing manufacturers’ reliance on human trials in the early stages.

The complex nature of the tongue’s biological surface has posed challenges in artificial replication, adding major obstacles to the development and screening of effective long-lasting treatments or therapies for dry mouth syndrome — roughly 10% of the general population and 30% of older people suffer from dry mouth.

Study lead author, Dr Efren Andablo-Reyes conducted this research while a postdoctoral fellow in the School of Food Science and Nutrition at Leeds. “Recreating the surface of an average human tongue comes with unique architectural challenges. Hundreds of small bud-like structures called papilla give the tongue its characteristic rough texture that in combination to the soft nature of the tissue create a complicated landscape from a mechanical perspective," he said. “We focused our attention on the anterior dorsal section of the tongue where some of these papillae contain taste receptors, while many of them lack such receptors. Both kinds of papillae play a critical role in providing the right mechanical friction to aid food processing in the mouth with the adequate amount saliva, providing pleasurable mouthfeel perception and proper lubrication for swallowing. We aimed to replicate these mechanically relevant characteristics of the human tongue in a surface that is easy to use in the lab to replicate oral processing conditions.”

First ever biomimetic tongue surface printed
Source: University of Leeds

The team took silicone impressions of tongue surfaces from fifteen adults. The impressions were 3D optically scanned to map papillae dimensions, density and the average roughness of the tongues. The texture of a human tongue was found to resemble a random layout.

The team used computer simulations and mathematical modelling to create a 3D printed artificial surface to function as a mould containing wells with the shape and dimensions of the different papillae randomly distributed across the surface with right density. This was replica-moulded against elastomers of optimised softness and wettability.

University of Edinburgh co-author, Rik Sarkar of the School of Informatics said: “The randomness in distribution of papillae appears to play an important sensory role for the tongue. We defined a new concept called collision probability to measure mechanosensing that will have large impact in this area. In the future, we will use a combination of machine learning and computational topology to create tongue models of diverse healthy and diseased individuals to address various oral conditions.”

The artificial surface was then 3D printed using digital light processing technology based in the School of Mechanical Engineering at Leeds.

First ever biomimetic tongue surface printed
Source: University of Leeds

The team ran a series of experiments using different complex fluids to ensure that the printed surface’s wettability – how a liquid keeps contact and spreads across a surface – and the lubrication performance was the same as the human tongue impressions.

Co-author Dr Michael Bryant from the School of Mechanical Engineering at Leeds said: “The application of bio-tribological principles, the study of friction and lubrication, in the creation of this tongue-like surface is a significant step forward in this field. “The ability to produce accurate replicas of tongue surfaces with similar structure and mechanical properties will help streamline research and development for oral care, food products and therapeutic technologies.”

First ever biomimetic tongue surface printed
Source: University of Leeds

Principal Investigator Anwesha Sarkar, Professor of Colloids and Surfaces at Leeds, said: “Accurately mapping and replicating the tongues surface and combining that with a material that approximates the elasticity of human tongue was no small task. "Harnessing expertise from multiple STEM disciplines, we’ve demonstrated the unprecedented capability of a 3D printed silicone surface to mimic the mechanical performance of the human tongue. We believe that fabricating a synthetic surface with relevant properties that mimics the intricate architectural features, and more importantly the lubricating performance of the human tongue is paramount to gaining quantitative understanding of how fluids interact within the oral cavity. This biomimetic tongue surface could also serve as a unique mechanical tool to help detect counterfeit in food and high-valued beverages based on textural attributes, which is a global concern and can help to ensure food safety. Ultimately, our hope is that the surface we have designed can be important in understanding how the biomechanics of the tongue underpin the fundamentals of human feeding and speech."

The study was published in ACS Applied Materials & Interfaces.

Subscribe to our newsletter

Related articles

3D printed oesophageal stents to revolutionize cancer treatment

3D printed oesophageal stents to revolutionize cancer treatment

World-first 3D printed oesophageal stents developed by the University of South Australia could revolutionize the delivery of chemotherapy drugs.

Arthritis: AI eliminates unnecessary treatments for children

Arthritis: AI eliminates unnecessary treatments for children

A machine learning algorithm was able to sort children with arthritis into distinct categories based on their patterns of inflamed joints in the body in a way that was also predictive of disease outcome.

Hemodialysis: Virtual reality lessens physical side effects

Hemodialysis: Virtual reality lessens physical side effects

Researchers have explored whether a virtual reality program on mindfulness/meditation could alleviate the physical side effects of hemodialysis patients.

AI, holographic microscopy beat scientists at analyzing immunotherapy​

AI, holographic microscopy beat scientists at analyzing immunotherapy​

AI is helping researchers decipher images from a new holographic microscopy technique needed to investigate a key process in cancer immunotherapy “live” as it takes place.

Breast cancer-on-a-chip tests immunotherapy drugs

Breast cancer-on-a-chip tests immunotherapy drugs

Researchers have successfully designed and tested a system for rapid testing of large numbers of potential immunotherapy drugs.

3D-printed bioresorbable airway stent

3D-printed bioresorbable airway stent

Researchers are using 3D printing to produce a new type of bioresorbable airway stent. This could greatly simplify the future treatment of upper airway obstruction.

3D printing resins in dental devices may be toxic

3D printing resins in dental devices may be toxic

Two commercially available 3D-printable resins, which are marketed as being biocompatible for use in dental applications, readily leach compounds into their surroundings.

The diagnotic potential of nanomedicine

The diagnotic potential of nanomedicine

Researchers have developed a new method to better understand how nanomedicines interact with patients' biomolecules.

Biomedical research: deep learning outperforms machine learning

Biomedical research: deep learning outperforms machine learning

Deep-learning methods have the potential to offer substantially better results, generating superior representations for characterizing the human brain.

Popular articles

Photo

3D printed ultra-low-cost hearing aid

Using a device that could be built with a dollar's worth of open-source parts and a 3D-printed case, researchers want to help the hundreds of millions of older people worldwide who can't afford existing hearing aids to address their age-related hearing loss.