3D-bioprinted NICE scaffolds can be used for bone regeneration.
3D-bioprinted NICE scaffolds can be used for bone regeneration.
Source: Texas A&M Engineering

Lab engineers 3D functional bone tissues

Scientists in the Department of Biomedical Engineering at Texas A&M University are leading research in developing new biomaterials to advance the field of 3D bioprinting functional tissues. Dr. Akhilesh K. Gaharwar, associate professor, has developed a highly printable bioink as a platform to generate anatomical-scale functional tissues.

Bioprinting is an emerging additive manufacturing approach that takes biomaterials such as hydrogels and combines them with cells and growth factors, which are then printed to create tissue-like structures that imitate natural tissues.

One application of this technology could be designing patient-specific bone grafts, an area that is gaining interest from researchers and clinicians. Managing bone defects and injuries through traditional treatments tends to be slow and expensive. Gaharwar said that developing replacement bone tissues could create exciting new treatments for patients suffering from arthritis, bone fractures, dental infections and craniofacial defects.

Bioprinting requires cell-laden biomaterials that can flow through a nozzle like a liquid, but solidify almost as soon as they're deposited. These bioinks need to act as both cell carriers and structural components, requiring them to be highly printable while providing a robust and cell‐friendly microenvironment. However, current bioinks lack sufficient biocompatibility, printability, structural stability and tissue‐specific functions needed to translate this technology to preclinical and clinal applications.

To address this issue, Gaharwar’s research group is leading efforts in developing advanced bioinks known as Nanoengineered Ionic–Covalent Entanglement (NICE) bioinks. NICE bioinks are a combination of two reinforcement techniques (nonreinforcement and ionic-covalent network), which together provide more effective reinforcement that results in much stronger structures. 

Once bioprinting is complete, the cell-laden NICE networks are crosslinked to form stronger scaffolds. This technique has allowed the lab to produce full-scale, cell-friendly reconstructions of human body parts, including ears, blood vessels, cartilage and even bone segments.

Soon after the bioprinting, the enclosed cells start depositing new proteins rich in a cartilage-like extracellular matrix that subsequently calcifies to form a mineralized bone over a three-month period. Almost five percent of these printed scaffolds consisted of calcium, which is similar to cancellous bone, the network of spongy tissue typically found in vertebral bones.

To understand how these bioprinted structures induce stem cell differentiation, a next-generation genomics technique called whole transcriptome sequencing (RNA-seq) was utilized. RNA-seq takes a snapshot of all genetic communication inside the cell at given moment. The team worked with Irtisha Singh from the Texas A&M Health Science Center, who served as a co-investigator. “The next milestone in 3D bioprinting is the maturation of bioprinted constructs toward the generation of functional tissues,” Gaharwar said. “Our study demonstrates that NICE bioink developed in our lab can be used to engineer 3D-functional bone tissues.”

In the future, Gaharwar’s team plans to demonstrate in vivo functionality of the 3D-bioprinted bone tissue.

Subscribe to our newsletter

Related articles

Organ bioprinting gets a breath of fresh air

Organ bioprinting gets a breath of fresh air

Bioengineers have cleared a major hurdle on the path to 3D printing replacement organs with a breakthrough technique for bioprinting tissues.

3D printing of biological tissue

3D printing of biological tissue

Scientists hope we will soon be using 3D-printed biologically functional tissue to replace irreparably damaged tissue in the body.

Voxel-based technique to streamline bioprinting

Voxel-based technique to streamline bioprinting

Researchers have developed a new bioprinting technique based on voxels.

Insulin-producing implant for diabetics

Insulin-producing implant for diabetics

Bioengineers are using 3D printing and smart biomaterials to create an insulin-producing implant for type 1 diabetes patients.

3D printing promotes tissue engineering

3D printing promotes tissue engineering

Researchers have demonstrated the viability of 3D-printed tissue scaffolds that harmlessly degrade while promoting tissue regeneration following implantation.

3D printing to aid tissue replacement

3D printing to aid tissue replacement

Researchers look to a future someday in which doctors can hit a button to print out a scaffold on their 3D printers and create custom-made replacement skin, cartilage, or other tissue for their patients.

Silk improves bioink for artificial organs

Silk improves bioink for artificial organs

Researchers mechanically reprocess silk into a biologically compatible component of bioinks that improves the structural fidelity of 3D-printed hydrogels containing cells for use in drug development and regrowing lost or damaged body

The heat is on for building 3D artificial organ tissues

The heat is on for building 3D artificial organ tissues

Radiator-like fluid systems adjust the genetic wiring inside human liver cells in preliminary work toward artificial organ-tissue engineering.

3D printing heart cells from stem cells

3D printing heart cells from stem cells

Scientists have shown that 3D printing can be used to control stem cell differentiation into embryoid bodies that replicate heart cells.

Popular articles

Subscribe to Newsletter