Low-cost 3D printed material helps to train nursing students

Students create 3d printed healthcare simulators for medical training.

Photo
A selection of training items that have been 3-D printed.
Source: University of Alabama Huntsville

Dr. Lori Lioce, clinical associate professor in the College of Nursing at The University of Alabama in Huntsville (UAH), has long advocated for the increased use of clinical simulation in nursing education. Searching for help in creating task trainers – clinical simulators that allow nursing students to repeatedly practice a specific skill in preparation for providing healthcare in the real world – Lioce turned to Norven Goddard, a research scientist at UAH’s Systems Management and Production (SMAP) Center. “Norven mentioned that the SMAP Center has six 3D printers,” says Lioce, “so I gave him a long list of what we needed and a bag of samples, and we collaborated on what he and his students could print.”

They decided to start with a cricothyrotomy trainer, which is used to teach nurses how to perform an emergency procedure to clear the airway when more traditional methods are ineffective. While the procedure is not typically part of the undergraduate nursing curriculum, the trainer is one the few whose digital design files are available on the open-source platform Thingiverse. “These models cost more than a thousand dollars, but we wanted something that would save money, be cost effective, and use the university’s resources,” says Goddard. “We asked ourselves, how cheaply can we do this?” To help, Goddard recruited a team of students with experience in of 3D printing and computer science.

Low-cost 3-D printed material

After the students downloaded the necessary digital design files for the cricothyrotomy trainer, Dr. Lioce says she worked with them “to get the right texture and strength.” Three prototypes later, she beams, “we got the right one!” The total price? $15. “Now we are using four of them in our class, with a savings of $6,000,” she says. She’s also integrating the team’s 3D printed vein finders, portable devices that use LED lights to help nurses locate difficult-to-find veins. Normally hundreds of dollars, Goddard says they were able to build them “for $6 using open-source design files.”

Next up is an onychectomy trainer. Used to teach nurses how to remove a thumbnail, the team’s 3D printed version will directly save $33 for each nurse practitioner student in the program. After that, they plan to tackle an injection pad, which is used to simulate injections. “With that we’re going one step further – we’re looking at injection molding,” says Goddard, adding that all of the students are involved in at least some part of the processes used to create these trainers. “We’re trying to cross-pollinate so everyone knows how to 3D print, injection mold, solder, use the software, and do whatever else is needed.” Another idea they’re “toying with,” he says, is converting MRIs to 3D models to help surgeons prepare for and practice operations. “We sit down with Lori every once in a while and ask, what’s next?”

Lioce, for her part, is thrilled about what they’ve already accomplished. “We’ve been able to substantiate a significant cost savings,” she says.” Now she’s hoping the collaboration between the College and the SMAP Center can be formalized and expanded, for two reasons. First, it offers a quick, cost-effective alternative to purchasing expensive, brand-name task trainers. And second, it benefits the students involved by exposing them to completely different fields of study, improving communication between fields and creating a synergy that can, in turn, lead to more advances. “Diversity of thought and science stimulates needed growth and solutions,” she says. “It’s precisely because we think differently that we are innovative together.”

Subscribe to our newsletter

Related articles

Medical customers adopt Stratasys 3D Printer

Medical customers adopt Stratasys 3D Printer

Stratasys Ltd. announced it has successfully sold and installed the J750 Digital Anatomy 3D printer at healthcare institutions and medical service providers in major markets across the globe.

Device stops bleeding from knife wounds

Device stops bleeding from knife wounds

A student at Loughborough University has designed life-saving device that rapidly stops bleeding from knife wounds.

Stereotactic systems from the 3D printer

Stereotactic systems from the 3D printer

Researchers have developed a way of manufacturing stereotactic systems from plastic using a 3D printer – a cost-effective method that opens up new design potential.

New Covid-19-test: portable, fast, accurate

New Covid-19-test: portable, fast, accurate

Researchers have developped a new coronavirus test, that can get accurate results from a saliva sample in less than 30 minutes.

Ink residue inhibits conductivity in 3D printed electronic

Ink residue inhibits conductivity in 3D printed electronic

Very thin layers of organic stabilizer residue in metal nanoparticle (MNP) inks are behind a loss of conductivity in 3D printed materials and electronic devices.

Organoids grown in 3D-printed bioreactor

Organoids grown in 3D-printed bioreactor

Scientists have grown small amounts of self-organizing brain tissue, known as organoids, in a tiny 3D-printed system that allows observation while they grow and develop.

A new medical device for monitoring vital signs

A new medical device for monitoring vital signs

A new device consisting of a 3D-printed wristband can remotely monitor patients' vital signs, such as body temperature, oxygen saturation, pulse, and respiratory rate.

Advanced tech enables simulated sinus surgery

Advanced tech enables simulated sinus surgery

The world’s first international online training session utilizing advanced 3D sinus models and a telemedicine system has taken place.

Device rapidly creates 3D images of skin

Device rapidly creates 3D images of skin

A portable 3D printed device produces high-resolution 3D images of human skin within 10 minutes. It could be used to assess the severity of skin conditions.

Popular articles

Subscribe to Newsletter