Using a custom volumetric additive manufacturing 3D printer, Lawrence Livermore...
Using a custom volumetric additive manufacturing 3D printer, Lawrence Livermore researchers were able to build tough and strong, as well as stretchable and flexible, objects nearly instantly from a class of materials known as thiol-ene resins.
Source: Maxim Shusteff/LLNL
03.11.2020 •

New materials help expand volumetric 3D printing

Researchers at Lawrence Livermore National Laboratory (LLNL) have adapted a new class of materials for their groundbreaking volumetric 3D printing method that produces objects nearly instantly, greatly expanding the range of material properties achievable with the technique.

The class of materials adapted for volumetric 3D printing are called thiol-ene resins, and they can be used with LLNL's volumetric additive manufacturing (VAM) techniques, including Computed Axial Lithography (CAL), which produces objects by projecting beams of 3D-patterned light into a vial of resin. The vial spins as the light cures the liquid resin into a solid at the desired points in the volume, and the uncured resin is drained, leaving the 3D object behind in a matter of seconds.

Previously, researchers worked with acrylate‐based resins that produced brittle and easily breakable objects using the CAL process. However, the new resin chemistry, created through the careful balancing of three different types of molecules, is more versatile and provides researchers with a flexible design space and wider range of mechanical performance. With thiol-ene resins, researchers were able to build tough and strong, as well as stretchable and flexible, objects, using a custom VAM printer at LLNL.

"These results are a key step toward our vision of using the VAM paradigm to significantly expand the types of materials that can be used in light-driven 3D printing," said LLNL engineer Maxim Shusteff, the work's principal investigator and head of a Laboratory Directed Research & Development project in advanced photopolymer materials development.

In the paper, researchers also demonstrated the first example of a method for designing the 3D energy dose delivered into the resin to predict and measure it, successfully printing 3D structures in the thiol‐ene resin through tomographic volumetric additive manufacturing. The demonstration creates a common reference for controlled 3D fabrication and for comparing resin systems, researchers said.

The team concluded the work represents a "significant advancement" for volumetric additive manufacturing as they work toward their goal of producing high‐performance printed engineering polymers, with particular emphasis on using thiol‐ene materials in biological scaffolds. Thio-lene materials have shown promise for applications including adhesives, electronics and as biomaterials, researchers said.

"By implementing a nonlinear threshold response into a broad range of chemistries, we plan to print with resins such as silicones or other materials that impart functionality," said LLNL materials engineer Caitlyn Cook.

By studying how the resin behaves at different light dosages, researchers added they aim to improve the agreement between computational models and experiments and apply photochemical behavior to the computed tomography reconstructions that produce the 3D models used to build objects.

The research waspublished in the journal Advanced Materials.

Subscribe to our newsletter

Related articles

A Covid-19 resistant material for 3D printing

A Covid-19 resistant material for 3D printing

Researchers have developed an antiviral material made from copper, silver and tungsten which can be 3D printed and kills the Covid-19 virus.

3D printing perovskites on graphene makes X-ray detectors

3D printing perovskites on graphene makes X-ray detectors

By using 3D aerosol jet-printing to put perovskites on graphene, scientists have made X-ray detectors with record sensitivity that can greatly improve the efficiency and reduce the cost.

Dynamic 3D printing process features a light-driven twist

Dynamic 3D printing process features a light-driven twist

Engineers have developed a new method that uses light to improve 3D printing speed and precision while also, in combination with a high-precision robot arm, providing the freedom to move, rotate, or dilate each layer as the structure is being built.

3D printed oesophageal stents to revolutionize cancer treatment

3D printed oesophageal stents to revolutionize cancer treatment

World-first 3D printed oesophageal stents developed by the University of South Australia could revolutionize the delivery of chemotherapy drugs.

3D-printed bioresorbable airway stent

3D-printed bioresorbable airway stent

Researchers are using 3D printing to produce a new type of bioresorbable airway stent. This could greatly simplify the future treatment of upper airway obstruction.

A 3D printed, sweating robot muscle

A 3D printed, sweating robot muscle

Researchers used 3D printing to create a soft robot muscle that can regulate its temperature through sweating.

3D printing resins in dental devices may be toxic

3D printing resins in dental devices may be toxic

Two commercially available 3D-printable resins, which are marketed as being biocompatible for use in dental applications, readily leach compounds into their surroundings.

Microneedles: Nano-sized, huge impact

Microneedles: Nano-sized, huge impact

By downscaling needles tool to micrometer-size, researchers open even more areas of application for them, while bypassing some of the most important issues.

A novel ink to 3D print bone with living cells

A novel ink to 3D print bone with living cells

3D printers may one day become a permanent fixture of the operating theatre after scientists showed they could print bone-like structures containing living cells.

Popular articles

Photo

3D printed ultra-low-cost hearing aid

Using a device that could be built with a dollar's worth of open-source parts and a 3D-printed case, researchers want to help the hundreds of millions of older people worldwide who can't afford existing hearing aids to address their age-related hearing loss.