Using a custom volumetric additive manufacturing 3D printer, Lawrence Livermore...
Using a custom volumetric additive manufacturing 3D printer, Lawrence Livermore researchers were able to build tough and strong, as well as stretchable and flexible, objects nearly instantly from a class of materials known as thiol-ene resins.
Source: Maxim Shusteff/LLNL

New materials help expand volumetric 3D printing

Researchers at Lawrence Livermore National Laboratory (LLNL) have adapted a new class of materials for their groundbreaking volumetric 3D printing method that produces objects nearly instantly, greatly expanding the range of material properties achievable with the technique.

The class of materials adapted for volumetric 3D printing are called thiol-ene resins, and they can be used with LLNL's volumetric additive manufacturing (VAM) techniques, including Computed Axial Lithography (CAL), which produces objects by projecting beams of 3D-patterned light into a vial of resin. The vial spins as the light cures the liquid resin into a solid at the desired points in the volume, and the uncured resin is drained, leaving the 3D object behind in a matter of seconds.

Previously, researchers worked with acrylate‐based resins that produced brittle and easily breakable objects using the CAL process. However, the new resin chemistry, created through the careful balancing of three different types of molecules, is more versatile and provides researchers with a flexible design space and wider range of mechanical performance. With thiol-ene resins, researchers were able to build tough and strong, as well as stretchable and flexible, objects, using a custom VAM printer at LLNL.

"These results are a key step toward our vision of using the VAM paradigm to significantly expand the types of materials that can be used in light-driven 3D printing," said LLNL engineer Maxim Shusteff, the work's principal investigator and head of a Laboratory Directed Research & Development project in advanced photopolymer materials development.

In the paper, researchers also demonstrated the first example of a method for designing the 3D energy dose delivered into the resin to predict and measure it, successfully printing 3D structures in the thiol‐ene resin through tomographic volumetric additive manufacturing. The demonstration creates a common reference for controlled 3D fabrication and for comparing resin systems, researchers said.

The team concluded the work represents a "significant advancement" for volumetric additive manufacturing as they work toward their goal of producing high‐performance printed engineering polymers, with particular emphasis on using thiol‐ene materials in biological scaffolds. Thio-lene materials have shown promise for applications including adhesives, electronics and as biomaterials, researchers said.

"By implementing a nonlinear threshold response into a broad range of chemistries, we plan to print with resins such as silicones or other materials that impart functionality," said LLNL materials engineer Caitlyn Cook.

By studying how the resin behaves at different light dosages, researchers added they aim to improve the agreement between computational models and experiments and apply photochemical behavior to the computed tomography reconstructions that produce the 3D models used to build objects.

The research waspublished in the journal Advanced Materials.

Subscribe to our newsletter

Related articles

A 3D printed multifunctional pressure sensor

A 3D printed multifunctional pressure sensor

The 3D printed pressure sensor embedded with a temperature sensor is low-cost and scalable to large-scale production of smart robotic systems.

3D printed knee implant for arthritis sufferers

3D printed knee implant for arthritis sufferers

A groundbreaking new treatment that uses 3D printed implants and that could bring relief to tens of thousands of knee osteoarthritis sufferers has received approval to be trialled in UK patients.

3D printing programmable structures from the printer

3D printing programmable structures from the printer

Researchers have developed a new process for producing movable, self-adjusting materials systems with standard 3D-printers.

Universal approach to tailoring soft robots

Universal approach to tailoring soft robots

An integrated design optimisation and fabrication workflow opens new opportunities for tailoring the mechanical properties of soft machines.

3D printing promotes tissue engineering

3D printing promotes tissue engineering

Researchers have demonstrated the viability of 3D-printed tissue scaffolds that harmlessly degrade while promoting tissue regeneration following implantation.

Turning up the heat on 3D printing inks

Turning up the heat on 3D printing inks

A process that uses heat to change the arrangement of molecular rings on a chemical chain creates 3D-printable gels that can fold, roll, or just hold their shape.

Controlling the performance of 3D printed implants

Controlling the performance of 3D printed implants

In order to quickly customize implants with complex structures, scientists use 3D printing technology to prepare Ti-Mo alloy implants, and then adjust the microstructure and performance through subsequent heat treatment.

Medical technologies that come out of the printer

Medical technologies that come out of the printer

Fraunhofer-Gesellschaft's German-Polish High-Performance Center brings additive manufacturing to medical technology – first demonstrators will already be presented by the end of 2021.

3D printing devices to boost bacterial resistance

3D printing devices to boost bacterial resistance

Researchers have discovered how to tailor-make artificial body parts and other medical devices with built-in functionality that offers better shape and durability, while cutting the risk of bacterial infection at the same time.

Popular articles

Subscribe to Newsletter