Researchers have found a way to speed up tissue engineering for potential organ...
Researchers have found a way to speed up tissue engineering for potential organ regeneration or replacement using a novel bioprinter.
Source: University of Alabama at Birmingham

Novel bioprinter shows potential to speed tissue engineering

The dream of tissue engineering is a computer-controlled manufacturing of complex and functional human tissue for potential organ regeneration or replacement. University of Alabama at Birmingham biomedical researchers have found a way to speed that tissue creation using a novel bioprinter built for $2,000, they report in the journal Micromachines. Building blocks for the tissue are pre-grown spheroids of human induced-pluripotent stem cells that contain 200,000 cells per spheroid.

The first commercial bioprinter from Japan builds tissue one spheroid at a time, placing the spheroids on metal pins that can be removed after the growing cells expand and fuse into tissue. The UAB approach could increase the efficiency of that scaffold-free bioprinting by as much as a hundred-fold.

The key? The UAB proof-of-concept bioprinter picks up multiple spheroids at the same time and places them simultaneously on a matrix of pins. The UAB prototype used a 4-by-4 matrix of 16 pins, so 16 spheroids could be placed at once, with a cycle speed of 45 seconds. A video, which does not include the reservoir of spheroids, shows how one cycle works.

The machine, about the size of a toaster, fits easily in a biosafety hood and its parts can be sterilized by autoclave or ethylene oxide. It has three main components. First is a spheroid bath stage that holds a watch glass with a concave bottom. Pre-grown spheroids sit in that reservoir, and the shape settles them into the center of the vessel. For loading, the stage swings into place underneath second main part, the print head.

The print head has 16 holes arranged in the shape of a needle matrix at the bottom of the bioprinter. The head dips into the reservoir, and a vacuum pump pulls spheroids onto each of the holes. The head, carrying the spheroids, then lifts, the stage swings away and the head descends to that third main part, the needle-array bath.

At the tips of the 16 needles, the print head slowly pushes the spheroids onto the needles. The vacuum is released, freeing the spheroids from the print head, which then rises for another cycle.

In development of the prototype, glass beads were used first to measure the spheroid pick-up efficiency for the vacuum pump-print head. Then, alginate beads were used to test the bioprinter’s ability to correctly print onto the needle array. Finally, as proof-of-concept, pre-grown spheroids of human induced-pluripotent stem cells were used to confirm the ability of the bioprinter to place an array of cellular spheroids onto the array.

The UAB bioprinter effectively aspirated and transferred a single layer of cellular spheroids onto the needles. “This novel, layer-by-layer scaffold-free bioprinter is efficient and precise in operation, and it can easily be scaled to print large tissues,” said Jianyi “Jay” Zhang, M.D., Ph.D., who led the research and is corresponding author. “Having the ability to build larger, more clinically relevant tissues in a shorter length of time using this method would be very beneficial for various fields of medicine and clinical research.”

Subscribe to our newsletter

Related articles

Bioprinting mini pancreas to fight against diabetes

Bioprinting mini pancreas to fight against diabetes

EPFL spin-off Readily3D has developed a novel system that can print biological tissue in just 30 seconds.

3D lung created with inkjet bioprinting

3D lung created with inkjet bioprinting

The lung is rather challenging to create artificially for experimental use due to its complex structure and thinness. Researchers have succeeded in producing an artificial lung model using 3D printing.

A 'FRESH' way to bioprint tissues and organs

A 'FRESH' way to bioprint tissues and organs

A bioprinting method enables advanced tissue fabrication by using a yield-stress support bath that holds bioinks in place until they are cured and works with a wide array of bioinks.

Bioprinted heart provides new tool for surgeons

Bioprinted heart provides new tool for surgeons

Surgeons will soon have a powerful new tool for planning and practice with the creation of the first full-sized 3D bioprinted model of the human heart.

Silk improves bioink for artificial organs

Silk improves bioink for artificial organs

Researchers mechanically reprocess silk into a biologically compatible component of bioinks that improves the structural fidelity of 3D-printed hydrogels containing cells for use in drug development and regrowing lost or damaged body

The heat is on for building 3D artificial organ tissues

The heat is on for building 3D artificial organ tissues

Radiator-like fluid systems adjust the genetic wiring inside human liver cells in preliminary work toward artificial organ-tissue engineering.

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

3D printing heart cells from stem cells

3D printing heart cells from stem cells

Scientists have shown that 3D printing can be used to control stem cell differentiation into embryoid bodies that replicate heart cells.

Sugar: Sweet way to 3D print blood vessels

Sugar: Sweet way to 3D print blood vessels

Scientists have developed a way of using laser-sintering of powdered sugars to produce highly detailed structures that mimick the body’s intricate, branching blood vessels in lab-grown tissues.

Popular articles

Subscribe to Newsletter