Heart cells in a bioink (left) without oxygen support and (right) with...
Heart cells in a bioink (left) without oxygen support and (right) with oxygen-releasing capabilities. Live cells are stained green, dead cells in red.
Source: Khademhosseini Lab

Oxygen-releasing bioink for bioprinting

Researchers at the Terasaki Institute for Biomedical Innovation have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

Engineering new tissues can be used to alleviate shortages of organs in transplantation, as well as to develop physiological models for drug discovery applications. One of the emerging approaches to building tissues is through 3D printing, where cells and materials can be combined to make inks that can generate tissue structures. One of the limitations for making new tissues is that they require oxygen to survive. This oxygen is delivered through blood vessels, which take a few days to develop in a transplanted tissue.

A collaborative team, which includes a group from the Terasaki Institute for Biomedical Innovation (TIBI), has developed a bioink that offers a solution to this problem. This bioink can generate oxygen and deliver it to cells in 3D printed tissues to keep them alive before blood vessels penetrate the tissue. Therefore, when it is used in 3D bioprinting to construct tissue implants, the ability of cells to regenerate new tissue is greatly enhanced.

As discussed in their recent publication in Advanced Healthcare Materials, the TIBI group tested their oxygen-generating bioink extensively to optimize its chemical and physical properties. As a result, oxygen was delivered to the cells in the tissue constructs for the period necessary for blood vessels to develop fully. These blood vessels would then be able to resume their oxygen delivery functions, and the cells would have the additional support needed to grow and regenerate new tissue. The group also conducted separate experiments on tissue constructs using two different types of cells, including cardiac cells and muscle cells, and they demonstrated the positive effects of using the new bioink.

“By delivering oxygen to the implanted cells, we would be able to improve the tissue functionality and integration to the host tissue. A similar approach can be used to make functional tissues with improved survival for drug screening applications and pathophysiological studies within a long period of time,” said Samad Ahadian, Ph.D., lead investigator of the Terasaki Institute team.

Such developments can result in a variety of medical applications, including the enhancement of tissue regeneration in patients who have suffered a heart attack. These patients have experienced a period in which their heart is without a sufficient supply of oxygen. Therefore, there may be damage or a higher risk of harm to parts of their cardiac tissue. Tissue implants using the new bioink may help not only to increase the survival of the affected cardiac cells but can also help to support the growth and formation of the cardiac blood vessels.

Subscribe to our newsletter

Related articles

A swifter way towards 3D printed organs

A swifter way towards 3D printed organs

A new technique called SWIFT (sacrificial writing into functional tissue) allows 3D printing of large, vascularized human organ building blocks.

One step closer to bioprinting the human heart

One step closer to bioprinting the human heart

Researchers have developed a technique to 3D bioprint collagen, allowing them to fabricate fully functional components of the human heart.

3D printing heart cells from stem cells

3D printing heart cells from stem cells

Scientists have shown that 3D printing can be used to control stem cell differentiation into embryoid bodies that replicate heart cells.

Lego-inspired 3D printed soft tissue bricks

Lego-inspired 3D printed soft tissue bricks

Researchers have developed a tiny, 3D-printed technology that can be assembled like Lego blocks and help repair broken bones and soft tissue.

Sugar: Sweet way to 3D print blood vessels

Sugar: Sweet way to 3D print blood vessels

Scientists have developed a way of using laser-sintering of powdered sugars to produce highly detailed structures that mimick the body’s intricate, branching blood vessels in lab-grown tissues.

Researchers successfully bioprint healthy new tissue

Researchers successfully bioprint healthy new tissue

New muscle has successfully been created in mice using a minimally invasive technique dubbed ‘intravital 3D bioprinting’.

Transparent human organs allow 3D maps at the cellular level

Transparent human organs allow 3D maps at the cellular level

For the first time, researchers managed to make intact human organs transparent. Using microscopic imaging they could revealed underlying complex structures of the see-through organs at the cellular level.

A revolution in regenerative medicine

A revolution in regenerative medicine

3D printing: Researchers from across disciplines are developing new approaches and new materials for creating soft tissues.

Organ bioprinting gets a breath of fresh air

Organ bioprinting gets a breath of fresh air

Bioengineers have cleared a major hurdle on the path to 3D printing replacement organs with a breakthrough technique for bioprinting tissues.

Popular articles