Patient-specific 3D printed chest implant.
Patient-specific 3D printed chest implant.
Source: Queensland University of Technology

Pectus Excavatum: 3D printed scaffold implanted

Surgeons have implanted a patient suffering from a congenital defect with a novel, absorbable soft tissue reconstruction scaffold.

The world-first 3D printed chest reconstruction implant that has changed the life of a young medical student is the outcome of years of research by QUT Distinguished Professor Dietmar W. Hutmacher, an internationally recognised scientist who pioneered the use of patient-specific 3D printed scaffolds to repair bone and other tissue, and his team.

Pectus Excavatum (or funnel chest syndrome) is a rare malformation of the thorax characterized by a median or lateral depression of the sternum whereby the ribs and sternum grow inwards giving a concave appearance. Funnel chest occurs in 1 to 2% of the population. This is the most common congenital thoracic deformity.

Professor Hutmacher, the director of the ARC Industrial Transformation Centre in Additive Biomanufacturing in QUT’s Centre for Biomedical Technologies said the implant was made from porous, biodegradable material. "The implant was made to fit precisely over the chest deformity to allow the patient’s own blood vessels and fat tissue to grow into the implant to create a lasting normal shaped chest,” Professor Hutmacher said.

“The implant had to be flexible as the chest is in constant movement and so it had to have the ability to change shape without breaking. The soft tissue scaffold contained no ceramic additives that we use for rigid bone scaffolds. Our research with Dr Matthew Cheng over the past five years has shown that an implant injected with the patient’s own fat at the time of implantation would give the best chance of success.”

The surgery at Princess Alexandra was performed by Dr Michael Wagels who has collaborated closely with Professor Hutmacher for many years. “An important part of the surgery was injecting the scaffold with the patient’s own fat at the time of implant insertion to commence the reconstruction/regeneration of the highly porous scaffold with more than 90 per cent of her own tissue,” Dr Wagels said.

Subscribe to our newsletter

Related articles

Bioprinting tissues directly within the body

Bioprinting tissues directly within the body

Researchers take a step closer to 3D printing living tissues in patients as they develop a specially-formulated bio-ink designed for printing directly in the body.

Groundwork for patient-specific 3D printed meniscus

Groundwork for patient-specific 3D printed meniscus

Researchers have developed a novel methodology to provide non-invasive analysis of meniscal implants.

Grow a better jawbone in your ribs

Grow a better jawbone in your ribs

Engineers have developed a technique to grow live bone to repair craniofacial injuries by attaching a 3D-printed bioreactor.

3D printed bioceramic implant induces cranial regrowth

3D printed bioceramic implant induces cranial regrowth

A bioceramic implant has proved to stimulate regeneration of natural skull bone so that even large cranial defects can be repaired in a way that has not been possible before.

Machine learning speeds up bioscaffold development

Machine learning speeds up bioscaffold development

A dose of artificial intelligence can speed the development of 3D-printed bioscaffolds that help injuries heal.

Brains linked to computers using 3D printed implants

Brains linked to computers using 3D printed implants

Linking the human brain to a computer is usually only seen in science fiction, but now scientists have harnessed the power of 3D printing to bring the technology one step closer to reality.

A 3D printed device to excite nerves

A 3D printed device to excite nerves

A tiny, thin-film electrode with a 3D-printed housing has been implanted in the peripheral nervous system of songbirds, where it successfully recorded electrical impulses that drive vocalizations.

The role of surgical 3D printing in hospitals

The role of surgical 3D printing in hospitals

More and more hospitals are entering the world of 3D printing in surgery as decision-makers and surgeons are realising the immense benefits for surgeons and patients alike.

3D printed artery monitors blockages from the inside

3D printed artery monitors blockages from the inside

Engineers are developing a 3D printed artificial blood vessel that allows doctors and patients to keep tabs on its health remotely.

Popular articles