Portable 3D skin printer for wound healing

A new handheld 3D printer can deposit sheets of skin to cover large burn wounds – and its “bio ink” can accelerate the healing process.

Photo
The handheld 3D skin printer works like a paint roller, covering an area with a uniform sheet of skin, stripe by stripe. Blue dye was used for this photo shoot for visibility purposes.
Source: Daria Perevezentsev

The device, developed by a team of researchers from U of Toronto Engineering and Sunnybrook Health Sciences Centre, covers wounds with a uniform sheet of biomaterial, stripe by stripe. The bio ink dispensed by the roller is composed of mesenchymal stroma cells (MSCs) — stem cells that differentiate into specialized cell types depending on their environment. In this case, the MSC material promotes skin regeneration and reduces scarring.

The project is led by Richard Cheng (IBBME PhD candidate), under the supervision of Professor Axel Guenther (MIE), and in close collaboration with Dr. Marc Jeschke, director of the Ross Tilley Burn Centre, and his team at Sunnybrook Hospital. Their successful in-vivo trials on full-thickness wounds are reported in the journal Biofabrication.

The paper is a major step forward for the team, which unveiled the first prototype of the skin printer in 2018. The device was believed to be the first device of its kind to form tissue in situ, depositing and setting in place in two minutes or less. “Previously, we proved that we could deposit cells onto a burn, but there wasn’t any proof that there were any wound-healing benefits — now we’ve demonstrated that,” says Guenther.

The current method of care for burns is autologous skin grafting, which requires transplantation of healthy skin from other parts of the body onto the wound.

But large, full-body burns pose a greater challenge. Full-thickness burns are characterized by the destruction of both the outermost and innermost layers of the skin; these burns often cover a significant portion of the body. “With big burns, you don’t have sufficient healthy skin available, which could lead to patient deaths,” says Jeschke.

Since 2018, the printer has gone through 10 redesigns, as the team moves towards a design they envision surgeons using in an operating room. The current prototype includes a single-use microfluidic printhead to ensure sterilization, and a soft wheel that follows the track of the printhead, allowing for better control for wider wounds.

Next, Cheng says that they ultimately want to “further reduce the amount of scarring, on top of helping with wound healing. Our main focus moving forward will be on the in-vivo side.”

Jeschke believes the handheld skin printer could be seen in a clinical setting within the next five years. “Once it’s used in an operating room, I think this printer will be a game changer in saving lives. With a device like this, it could change the entirety of how we practice burn and trauma care.”

Subscribe to our newsletter

Related articles

3D printing heart cells from stem cells

3D printing heart cells from stem cells

Scientists have shown that 3D printing can be used to control stem cell differentiation into embryoid bodies that replicate heart cells.

3D printed rubbery brain implants

3D printed rubbery brain implants

Engineers are working on developing soft, flexible neural implants that can gently conform to the brain’s contours and monitor activity over longer periods.

Producing human tissue in space

Producing human tissue in space

The University of Zurich has sent adult human stem cells to the International Space Station to explore the production of human tissue in weightlessness.

Bioprinting complex living tissue in seconds

Bioprinting complex living tissue in seconds

Researchers have developed an extremely fast optical method for sculpting complex shapes in stem-cell-laden hydrogels and then vascularizing the resulting tissue.

Silicone-based 3D lattice can improve drug testing

Silicone-based 3D lattice can improve drug testing

Scientists have found the perfect geometry: on a newly developed 3D silicone lattice, human stem cells will grow and behave in the same way as they do inside the human body.

3D printing skin, bones on way to Mars

3D printing skin, bones on way to Mars

An ESA project has produced its first bioprinted skin and bone samples. The 3D printing human tissue could help keep astronauts healthy all the way to Mars.

Can bioprinted stem-cell tissue be used to treat kidney disease?

Can bioprinted stem-cell tissue be used to treat kidney disease?

Researchers have announced a collaboration to 3D bioprint stem-cell tissue that could one day be used to treat end-stage kidney disease.

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

3D printed smart swabs for COVID-19 testing

3D printed smart swabs for COVID-19 testing

Researchers have created a 3D printed self-adjusting smart swab that could be used for COVID-19 testing.

Popular articles