Rapid 3D printing moves toward bioprinted organs

Researchers are using a 3D printing method called stereolithography and jelly-like materials known as hydrogels to speed up (10-50 times faster than conventional printing techniques) and improve 3D printing.

It looks like science fiction: A machine dips into a shallow vat of translucent yellow goo and pulls out what becomes a life-sized hand. But the seven-second video, which is sped-up from 19 minutes, is real.

The hand, which would take six hours to create using conventional 3D printing methods, demonstrates what University at Buffalo engineers say is progress toward 3D-printed human tissue and organs — biotechnology that could eventually save countless lives lost due to the shortage of donor organs.

“The technology we’ve developed is 10-50 times faster than the industry standard, and it works with large sample sizes that have been very difficult to achieve previously,” says the study’s co-lead author Ruogang Zhao, PhD, associate professor of biomedical engineering.

The work centers on a 3D printing method called stereolithography and jelly-like materials known as hydrogels, which are used to create, among things, diapers, contact lenses and scaffolds in tissue engineering.

The latter application is particularly useful in 3D printing, and it’s something the research team spent a major part of its effort optimizing to achieve its incredibly fast and accurate 3D printing technique. “Our method allows for the rapid printing of centimeter-sized hydrogel models. It significantly reduces part deformation and cellular injuries caused by the prolonged exposure to the environmental stresses you commonly see in conventional 3D printing methods,” says the study’s other co-lead author, Chi Zhou, PhD, associate professor of industrial and systems engineering.

Researchers say the method is particularly suitable for printing cells with embedded blood vessel networks, a nascent technology expected to be a central part of the production of 3D-printed human tissue and organs.

A provisional patent of the technology is being filed, and a startup company has been formed to commercialize the technology.

The research is described in a study published Feb. 15 in the journal Advanced Healthcare Materials.

Subscribe to our newsletter

Related articles

Silk improves bioink for artificial organs

Silk improves bioink for artificial organs

Researchers mechanically reprocess silk into a biologically compatible component of bioinks that improves the structural fidelity of 3D-printed hydrogels containing cells for use in drug development and regrowing lost or damaged body

The heat is on for building 3D artificial organ tissues

The heat is on for building 3D artificial organ tissues

Radiator-like fluid systems adjust the genetic wiring inside human liver cells in preliminary work toward artificial organ-tissue engineering.

Bioprinting tiny, functional organs

Bioprinting tiny, functional organs

Researchers have developed an approach to print tiny tissues that look and function almost like their full-sized counterpart.

Organ bioprinting gets a breath of fresh air

Organ bioprinting gets a breath of fresh air

Bioengineers have cleared a major hurdle on the path to 3D printing replacement organs with a breakthrough technique for bioprinting tissues.

3D printing of biological tissue

3D printing of biological tissue

Scientists hope we will soon be using 3D-printed biologically functional tissue to replace irreparably damaged tissue in the body.

Ears from the 3D-printer

Ears from the 3D-printer

Researchers use the biodegradable material cellulose to produce implants for cartilage diseases using 3D printing.

A 'FRESH' way to bioprint tissues and organs

A 'FRESH' way to bioprint tissues and organs

A bioprinting method enables advanced tissue fabrication by using a yield-stress support bath that holds bioinks in place until they are cured and works with a wide array of bioinks.

Bioprinted heart provides new tool for surgeons

Bioprinted heart provides new tool for surgeons

Surgeons will soon have a powerful new tool for planning and practice with the creation of the first full-sized 3D bioprinted model of the human heart.

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

Popular articles

Subscribe to Newsletter