Blood vessels printed using using innovative technique dubbed ‘intravital 3D...
Blood vessels printed using using innovative technique dubbed ‘intravital 3D bioprinting’.
Source: University College London

Researchers successfully bioprint healthy new tissue

New muscle has successfully been created in mice using a minimally invasive technique dubbed ‘intravital 3D bioprinting’ by a team involving University College London scientists.

This new research could pave the way for minimally invasive surgical techniques for organ repair and reconstruction that could remove the need for transplantation in children with complex conditions.

For pioneering international study, researchers from the UCL Great Ormond Street Institute of Child Health developed a photosensitive bio-gel that uses light treatment to ‘print’ healthy new tissue directly into specific tissues and organs, and sustain blood supply that would allow it to thrive.

The light-sensitive bio-gel acted as a type of bio-ink, effectively ‘printing’ 3D structures that supported the creation of muscle fibres in the muscle of live mice and without the need for open surgery.

Researchers loaded a liquid gel with cells carefully selected to suit the type of tissue being printed. The bio-gel was then injected into the area of interest in the body with a simple syringe. Once in place, the team directed a near infrared light at the area from outside the body. Polymers inside the bio-gel bonded together under this wavelength of light, solidifying 3D structures layer by layer and allowing the cells to reach the desired position. With support from the structures, the cells adapted and connected to their new surroundings to form new tissue.

Initially tested on the skin and brain of the mouse, the team’s technique – coined Intravital 3D Printing, or i3D Bioprinting – was also successfully carried out in the muscle of a mouse where it created new tissue without causing damage to surrounding organs or tissues.

Furthermore, it did not create any waste material inside the body and has the potential to carry healthy donor cells. This could be life-changing in cases where a child’s own cells aren’t suitable or available to help repair or reconstruct damaged or missing tissue.

Project lead Professor Nicola Elvassore (UCL GOS Institute of Child Health), whose research team spans the ICH, Italy and China, said: “Recent attempts at 3D bioprinting have required direct access to the tissue and space to manoeuvre the 3D bioprinting pen, to control how the tissue forms its shape and structure. That meant they focused on parts of the body that are easier to access, such as the skin. We’re really excited that our technique seems to be much more controllable in three dimensions, allowing us to accurately image in 3D the anatomical sites of interest and safely print new tissue in areas that aren’t easy to access without major surgery, like the brain.”

Recommended article

First-author Dr Anna Urciuolo, visiting research associate at the UCL GOS Institute of Child Health, said: “It was an exciting and challenging project, which required the fusion of emerging technologies in a multidisciplinary approach. By performing 3D bioprinting directly within the body of live animal model, we were able to deliver donor muscle stem cells in a spatially controlled manner, increasing their ability to develop new muscle tissue.”

The international team, which included researchers from Italy’s University of Padova and Veneto Institute of Molecular Medicine, successfully ‘printed’ the gel within skin, muscle and brain tissues. Co-author Professor Paolo De Coppi, who is Nuffield Professor of Surgery at UCL GOS Institute of Child Health and a Consultant at Great Ormond Street Hospital (GOSH), said: “This is an important step in repairing damaged tissue and offers the possibility of minimally invasive regeneration, which could change in the future the way we treat congenital malformations such as spina bifida and diaphragmatic hernia at GOSH. We still have plenty of work to do before we can safely use this approach with patients, but the pre-clinical findings are promising.”

Although still in its pre-clinical stage, this kind of tissue engineering research could lead to a new standard of care for patients with complex physical conditions, especially in the case of children with damaged organs.

Subscribe to our newsletter

Related articles

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

Sugar: Sweet way to 3D print blood vessels

Sugar: Sweet way to 3D print blood vessels

Scientists have developed a way of using laser-sintering of powdered sugars to produce highly detailed structures that mimick the body’s intricate, branching blood vessels in lab-grown tissues.

3D printing of biological tissue

3D printing of biological tissue

Scientists hope we will soon be using 3D-printed biologically functional tissue to replace irreparably damaged tissue in the body.

Silk improves bioink for artificial organs

Silk improves bioink for artificial organs

Researchers mechanically reprocess silk into a biologically compatible component of bioinks that improves the structural fidelity of 3D-printed hydrogels containing cells for use in drug development and regrowing lost or damaged body

The heat is on for building 3D artificial organ tissues

The heat is on for building 3D artificial organ tissues

Radiator-like fluid systems adjust the genetic wiring inside human liver cells in preliminary work toward artificial organ-tissue engineering.

A 3D printed device to excite nerves

A 3D printed device to excite nerves

A tiny, thin-film electrode with a 3D-printed housing has been implanted in the peripheral nervous system of songbirds, where it successfully recorded electrical impulses that drive vocalizations.

3D printed lifelike heart valve models

3D printed lifelike heart valve models

Researchers have developed a groundbreaking process for multi-material 3D printing of lifelike models of the heart's aortic valve and the surrounding structures.

3D printing heart cells from stem cells

3D printing heart cells from stem cells

Scientists have shown that 3D printing can be used to control stem cell differentiation into embryoid bodies that replicate heart cells.

Lego-inspired 3D printed soft tissue bricks

Lego-inspired 3D printed soft tissue bricks

Researchers have developed a tiny, 3D-printed technology that can be assembled like Lego blocks and help repair broken bones and soft tissue.

Popular articles