Sight for sore eyes – First 3D printed human corneas

The first human corneas have been 3D printed by scientists at Newcastle University. It means the technique could be used in the future to ensure an unlimited supply of corneas.

Photo
Dr Steve Swioklo, co-author with Prof Che Connon (right).
Source: Newcastle University

As the outermost layer of the human eye, the cornea has an important role in focusing vision. Yet there is a significant shortage of corneas available to transplant, with 10 million people worldwide requiring surgery to prevent corneal blindness as a result of diseases such as trachoma, an infectious eye disorder. In addition, almost 5 million people suffer total blindness due to corneal scarring caused by burns, lacerations, abrasion or disease.

The proof-of-concept research, published in Experimental Eye Research, reports how stem cells (human corneal stromal cells) from a healthy donor cornea were mixed together with alginate and collagen to create a solution that could be printed, a ‘bio-ink’. Using a simple low-cost 3D bio-printer, the bio-ink was successfully extruded in concentric circles to form the shape of a human cornea. It took less than 10 minutes to print. The stem cells were then shown to culture – or grow.

Unique bio-ink

Che Connon, Professor of Tissue Engineering at Newcastle University, who led the work, said: “Many teams across the world have been chasing the ideal bio-ink to make this process feasible. “Our unique gel – a combination of alginate and collagen – keeps the stem cells alive whilst producing a material which is stiff enough to hold its shape but soft enough to be squeezed out the nozzle of a 3D printer. This builds upon our previous work in which we kept cells alive for weeks at room temperature within a similar hydrogel. Now we have a ready to use bio-ink containing stem cells allowing users to start printing tissues without having to worry about growing the cells separately.”

The scientists, including first author Ms Abigail Isaacson from the Institute of Genetic Medicine, Newcastle University, also demonstrated that they could build a cornea to match a patient’s unique specifications. The dimensions of the printed tissue were originally taken from an actual cornea. By scanning a patient’s eye, they could use the data to rapidly print a cornea which matched the size and shape.

Professor Connon added: “Our 3D printed corneas will now have to undergo further testing and it will be several years before we could be in the position where we are using them for transplants. However, what we have shown is that it is feasible to print corneas using coordinates taken from a patient eye and that this approach has potential to combat the world-wide shortage.”

Dr Neil Ebenezer, director of research, policy and innovation at Fight for Sight, said: “We are delighted at the success of researchers at Newcastle University in developing 3D printing of corneas using human tissue. This research highlights the significant progress that has been made in this area and this study is important in bringing us one step closer to reducing the need for donor corneas, which would positively impact some patients living with sight loss. However, it is important to note that this is still years away from potentially being available to patients and it is still vitally important that people continue to donate corneal tissue for transplant as there is a shortage within the UK. A corneal transplant can give someone back the gift of sight.”

Subscribe to our newsletter

Related articles

Voxel-based technique to streamline bioprinting

Voxel-based technique to streamline bioprinting

Researchers have developed a new bioprinting technique based on voxels.

Imaging technique to improve bioprinted implants

Imaging technique to improve bioprinted implants

Scientists have developed a new microscopic imaging approach to take a closer look at 3D printing for developing future patient implants, as well as improved disease modelling and drug screening.

3D Printing living cells with unprecedented precision

3D Printing living cells with unprecedented precision

The combination of a 2Photon 3D-printer with an innovative hydrogel-based bioink allows the direct printing of 3D structures containing living cells at both the meso- and microscale.

Rapid 3D printing moves toward bioprinted organs

Rapid 3D printing moves toward bioprinted organs

Researchers are using a 3D printing method called stereolithography and jelly-like materials known as hydrogels to speed up and improve 3D printing.

A 'FRESH' way to bioprint tissues and organs

A 'FRESH' way to bioprint tissues and organs

A bioprinting method enables advanced tissue fabrication by using a yield-stress support bath that holds bioinks in place until they are cured and works with a wide array of bioinks.

Bioprinted heart provides new tool for surgeons

Bioprinted heart provides new tool for surgeons

Surgeons will soon have a powerful new tool for planning and practice with the creation of the first full-sized 3D bioprinted model of the human heart.

Silk improves bioink for artificial organs

Silk improves bioink for artificial organs

Researchers mechanically reprocess silk into a biologically compatible component of bioinks that improves the structural fidelity of 3D-printed hydrogels containing cells for use in drug development and regrowing lost or damaged body

The heat is on for building 3D artificial organ tissues

The heat is on for building 3D artificial organ tissues

Radiator-like fluid systems adjust the genetic wiring inside human liver cells in preliminary work toward artificial organ-tissue engineering.

Bioprinting tiny, functional organs

Bioprinting tiny, functional organs

Researchers have developed an approach to print tiny tissues that look and function almost like their full-sized counterpart.

Popular articles

Subscribe to Newsletter