Student 3D bioprints cancer

Shalini Guleria, Masters student at University of Waikato, plans to 3D bioprint life-sized breast cancer tumours. Her research goal is to establish faster and more effective treatment for women with the disease. Guleria has been through the design phase, and is now about to see if bioprinting will work with cancer cells. At the moment testing on cancer cells is done in 2D, basically a flat layer of cells. But Guleria says being able to work on a 3D model will be far more representative, and potentially more accurate.

Photo

Guleria has printed up models of the tumours using plastic, to test out the design. They are black, webbed semi-circles that fit roughly in the palm of your hand. For her research she will replace the plastic in the 3D printer with commercially available cancer cells, printing out the mesh, and seeing how the cancer grows, filling out a palm sized tumour.

Bioprinting is predominately used in the area of organ transplants. The idea is to use a person’s own cells to grow a new organ, perhaps a liver or kidney, which will not be rejected. But Guleria is taking a completely different approach to the process, and she believes it can provide a broader picture of cancer. “Once the tumour is printed we will be able to slice it and look into the depths of the cell. You can look at how the tissues are growing, the fibres connecting and the cell organelles – the things that make the cell grow – how they differ to the 2D model.”

Once the tumour is printed and grown, Guleria will use a common breast cancer chemotherapy drug, Cisplatin, on it. She says how the 3D tumours react to the drug may be quite different to the 2D model science has been relying on. “Testing cancer drugs on a more realistic model may mean we can hone how we use them. If we can reduce the treatment time and the dosage, obviously the side-effects will be less, making treatment less traumatic for women.”

Further down the track Guleria says the implications could be wider. “We may be able to take the cells from someone who has cancer, and use them to produce something we can test very specifically for that patient. Then we could make a detailed treatment plan for an individual’s body, rather than take a generic approach. A panadol might work for you, and not someone else – everyone’s bodies are different.”

Cancer is sometimes used as a metaphor: it is seen as evil, frightening and even invincible. But Guleria works with it in the lab, literally handling it almost every day, and is about to create the kind of tumour that might in other circumstances grow in a woman’s breast, and change her life forever. “I don’t find it scary. We grow them, but because cancer cells mutate very rapidly, and can have viral vectors, there are risks involved. We are in a high containment level lab facility, and every precaution is taken.”

Subscribe to our newsletter

Related articles

Researchers use bioprinting to create nose cartilage

Researchers use bioprinting to create nose cartilage

Researchers have used 3D bioprinting technology to create custom-shaped cartilage. They aim to make it easier for surgeons to safely restore the features of skin cancer patients living with nasal cartilage defects after surgery.

Voxel-based technique to streamline bioprinting

Voxel-based technique to streamline bioprinting

Researchers have developed a new bioprinting technique based on voxels.

Aerogel: the micro structural material of the future

Aerogel: the micro structural material of the future

Scientists from Empa were able to 3D print stable well-shaped microstructures made from silica aerogels for use in biotechnology and precision engineering.

3D printing promotes tissue engineering

3D printing promotes tissue engineering

Researchers have demonstrated the viability of 3D-printed tissue scaffolds that harmlessly degrade while promoting tissue regeneration following implantation.

Reverse 3D printing to make tiny implants

Reverse 3D printing to make tiny implants

Researchers have developed a 3D printing technique that allows them to create incredibly small and complex biomedical implants.

3D printing to aid tissue replacement

3D printing to aid tissue replacement

Researchers look to a future someday in which doctors can hit a button to print out a scaffold on their 3D printers and create custom-made replacement skin, cartilage, or other tissue for their patients.

3D biocomposites can repair large bone defects

3D biocomposites can repair large bone defects

Loosening hip implants can cause major damage to the bone and a simple replacement won’t suffice to carry the load during movements. Researchers have turned to bioprinting to solve this problem.

3D Printing living cells with unprecedented precision

3D Printing living cells with unprecedented precision

The combination of a 2Photon 3D-printer with an innovative hydrogel-based bioink allows the direct printing of 3D structures containing living cells at both the meso- and microscale.

How seaweed molecules could aid wound healing

How seaweed molecules could aid wound healing

Scientists have discovered that a molecular species known as ulvan aids wound healing in humans.

Popular articles

Subscribe to Newsletter