Superior bio-ink for 3D printing pioneered

Rutgers biomedical engineers have developed a “bio-ink” for 3D printed materials that could serve as scaffolds for growing human tissues to repair or replace damaged ones in the body.

Photo
This 3D printing system would print gel scaffolds, or support structures, for growing human tissues. The system would include hyaluronic acid and polyethylene glycol as the basic “ink cartridges” and other cartridges featuring inks with different cells and ligands that serve as binding sites for cells.
Source: Madison Godesky

Bioengineered tissues show promise in regenerative, precision and personalized medicine; product development; and basic research, especially with the advent of 3D printing of biomaterials that could serve as scaffolds, or temporary structures to grow tissues.

Hyaluronic acid, a natural molecule found in many tissues throughout the body, has many properties ideal for creating customized scaffolds, but lacks the durability required. The Rutgers engineers use modified versions of hyaluronic acid and polyethylene glycol to form a gel that is strengthened via chemical reactions and would serve as a scaffold. “Instead of an ink color for an inkjet printer, we want the mixture to have properties that are right for specific cells to multiply, differentiate and remodel the scaffold into the appropriate tissue,” said senior author David I. Shreiber, a professor who chairs the Department of Biomedical Engineering in the School of Engineering at Rutgers University–New Brunswick. “We focus on the stiffness of the gel and scaffold binding sites that cells can latch onto.”

Groups of cells in the body generally make their own support structures, or scaffolds, but scientists can build them from proteins, plastics and other sources, according to the National Institutes of Health.

Shreiber and lead author Madison D. Godesky, who earned a doctorate at Rutgers, envisioned a system where hyaluronic acid and polyethylene glycol serve as the basic “ink cartridges” for 3D printing. The system would also have other ink cartridges featuring different cells and ligands, which serve as binding sites for cells. The system would print gel scaffolds with the right stiffness, cells and ligands, based on the type of tissue desired. “Both the stiffness and the binding sites provide important signals to cells,” Godesky said. “What especially distinguishes our work from previous studies is the potential to control the stiffness and ligands independently through combinations of inks.”

Subscribe to our newsletter

Related articles

4D printed tiny needles that could replace hypodermic needles

4D printed tiny needles that could replace hypodermic needles

Rutgers University have devised a way to integrate microneedles with backward facing barbs, so that microneedle arrays can stay in place as long as needed.

Artificial pericardial tissue from the 3D printer

Artificial pericardial tissue from the 3D printer

In the PolyKARD project, biomimetic polymers are being developed that can imitate the mechanical properties of pericardial tissue.

Lab engineers 3D functional bone tissues

Lab engineers 3D functional bone tissues

Researchers have developed a printable bioink that could be used to create anatomical-scale functional tissues.

The role of surgical 3D printing in hospitals

The role of surgical 3D printing in hospitals

More and more hospitals are entering the world of 3D printing in surgery as decision-makers and surgeons are realising the immense benefits for surgeons and patients alike.

Device could support multiple COVID-19 patients from one ventilator

Device could support multiple COVID-19 patients from one ventilator

3D printing fuels efforts to rapidly increase ventilator capacity while providing each patient on vent support with individually tailored gas pressures and pressure monitoring.

Bringing magnetic resonance to fertility treatment

Bringing magnetic resonance to fertility treatment

EPFL spin-off Annaida is developing a magnetic resonance system that can detect the chemistry inside the tiniest living organisms.

A 3D-printed diffuser to treat COVID-19 patients

A 3D-printed diffuser to treat COVID-19 patients

Scientists have delivered more than 200 3D-printed diffusers for metered dose inhalers (MDI) to the Houston hospital and stands ready to produce more if needed.

Engineers develop 3D printed ventilator splitters

Engineers develop 3D printed ventilator splitters

The prototype was developed in response to the urgent need for more ventilators to treat patients with acute respiratory distress syndrome caused by COVID-19.

3D printed rubbery brain implants

3D printed rubbery brain implants

Engineers are working on developing soft, flexible neural implants that can gently conform to the brain’s contours and monitor activity over longer periods.

Popular articles