Using bacteria as micro-3D printers

A team at Aalto University has used bacteria to produce intricately designed three-dimensional objects made of nanocellulose. With their technique, the researchers are able to guide the growth of bacterial colonies through the use of strongly water repellent – or superhydrophobic – surfaces. The objects show tremendous potential for medical use, including supporting tissue regeneration or as scaffolds to replace damaged organs.

Photo
Unlike in conventional 3D printing, the fibres can be aligned in any direction, even across layers.
Source: Luiz Greca/Aalto University

Unlike fibrous objects made through current 3D printing methods, the new technique allows fibres, with a diameter a thousand times thinner than a human hair, to be aligned in any orientation, even across layers, and various gradients of thickness and topography, opening up new possibilities for application in tissue regeneration. These kinds of physical characteristics are crucial for support materials in the growth and regeneration of certain types of tissues found in muscles as well as in the brain.

‘It’s like having billions of tiny 3D printers that fit inside a bottle,’ explains Luiz Greca, a doctoral student at Aalto University. ‘We can think of the bacteria as natural microrobots that take the building blocks provided to them and, with the right input, create complex shapes and structures.’

Using the technique, the team has created 3D objects with pre-designed features, measuring from one-tenth the diameter of a single hair all the way up to 15-20 centimetres. The nano-sized fibres do not cause adverse reactions when placed in contact to human tissues. The method could also be used to grow realistic models of organs for training surgeons or improving the accuracy of in-vitro testing.

‘It’s really exciting to expand this area of biofabrication that takes advantage of strong cellulose nanofibres and the networks they form. We’re exploring applications for age-related tissue degeneration, with this method being a step forward in this and other directions,’ says research group leader Professor Orlando Rojas. He adds that the strain of bacteria used by the team, Komagataeibacter medellinensis, was discovered in a local market in the city of Medellin, Colombia, by previous collaborators from Universidad Pontificia Bolivariana.

In both nature and engineering, superhydrophobic surfaces are designed to minimise the adhesion of dust particles as well as microorganisms. This work is expected to open new possibilities for using superhydrophobic surfaces to precisely produce naturally manufactured materials.

As the bacteria can be removed or left in the final material, the 3D objects can also evolve as a living organism over time. The findings provide an important step towards harnessing full control over bacterially fabricated materials. ‘Our research really shows the need to understand both the fine details of bacteria interaction at interfaces and their ability to make sustainable materials. We hope that these results will also inspire scientists working on both bacteria-repelling surfaces and those making materials from bacteria,’ says Dr. Blaise Tardy.

The reserach has been published in ACS Nano.

Subscribe to our newsletter

Related articles

Silk improves bioink for artificial organs

Silk improves bioink for artificial organs

Researchers mechanically reprocess silk into a biologically compatible component of bioinks that improves the structural fidelity of 3D-printed hydrogels containing cells for use in drug development and regrowing lost or damaged body

The heat is on for building 3D artificial organ tissues

The heat is on for building 3D artificial organ tissues

Radiator-like fluid systems adjust the genetic wiring inside human liver cells in preliminary work toward artificial organ-tissue engineering.

Oxygen-releasing bioink for bioprinting

Oxygen-releasing bioink for bioprinting

Researchers have developed an oxygen-releasing bioink that may be useful in 3D printing bioengineered cell constructs.

3D printing heart cells from stem cells

3D printing heart cells from stem cells

Scientists have shown that 3D printing can be used to control stem cell differentiation into embryoid bodies that replicate heart cells.

Sugar: Sweet way to 3D print blood vessels

Sugar: Sweet way to 3D print blood vessels

Scientists have developed a way of using laser-sintering of powdered sugars to produce highly detailed structures that mimick the body’s intricate, branching blood vessels in lab-grown tissues.

Bioprinted heart provides new tool for surgeons

Bioprinted heart provides new tool for surgeons

Surgeons will soon have a powerful new tool for planning and practice with the creation of the first full-sized 3D bioprinted model of the human heart.

Gel instrumental in bioprinting tissues

Gel instrumental in bioprinting tissues

Researchers at Penn State have developed a supportive gel that allows for printing of complex shapes using cell aggregates.

3D printed bioceramic implant induces cranial regrowth

3D printed bioceramic implant induces cranial regrowth

A bioceramic implant has proved to stimulate regeneration of natural skull bone so that even large cranial defects can be repaired in a way that has not been possible before.

Bioprinting tiny, functional organs

Bioprinting tiny, functional organs

Researchers have developed an approach to print tiny tissues that look and function almost like their full-sized counterpart.

Popular articles