World first in 3D printed self-expandable stents

Researchers from CSIRO, Australia's national science agency, have made it possible to 3D print tailor-made stents, a critical biomedical device used to treat narrow or blocked arteries.

Photo
The proof-of-concept stents offer the potential for customisation to individual patient requirements, but are equally as suitable for mass production
Source: CSIRO

The breakthrough, made in partnership with Wollongong-based Medical Innovation Hub, represents a paradigm shift in the production of self-expanding nitinol stents for Peripheral Arterial Disease (PAD), which afflicts more than 10 per cent of Australians.

PAD is a condition in which fatty deposits collect and reduce blood flow in arteries outside the heart — most commonly in the legs. People with PAD typically experience pain when walking and in severe cases may develop gangrene.

Minister for Industry, Science and Technology, Karen Andrews, said the home-grown technology had the potential to revolutionise the $16 billion global stent manufacturing industry. "This is a great example of industry working with our researchers to develop an innovative product that addresses a global need and builds on our sovereign capability," Minister Andrews said.

Until now, surgeons have been restricted to accessing 'off-the-shelf' stents for operations. The ability to 3D print stents is expected to improve sizing options, preserve essential anatomy, and enable diameters and shapes to suit individual patient requirements.

The process could also allow for individual stents to be made on-site, under the surgeon's direction, reducing inventory and saving money. Finding a way to 3D print a self-expandable nitinol stent without compromising the metal's unique properties has challenged metallurgists around the world.

The team of scientists at CSIRO's Lab22 in Melbourne cracked the problem using a cutting-edge 3D printing process called Selective Laser Melting. CSIRO Principal Research Scientist Dr Sri Lathabai said the process allowed them to create complex products with high geometric accuracy that are patient specific. "Nitinol is a shape-memory alloy with superelastic properties," Dr Lathabai said. "It's a tricky alloy to work with in 3D printing conditions, due to its sensitivity to stress and heat. We had to select the right 3D-printing parameters to get the ultra-fine mesh structure needed for an endovascular stent, as well as carefully manage heat treatments so the finished product can expand as needed, once inside the body."

Chief Executive of Medical Innovation Hub Dr Arthur Stanton is a vascular surgeon who has treated thousands of patients and saw a need for an improved treatment. "Currently, surgeons use off-the-shelf stents, and although they come in various shapes and sizes, overall there are limitations to the range of stents available," Dr Stanton said. "We believe our new 3D-printed self-expanding nitinol stents offer an improved patient experience through better fitting devices, better conformity to blood vessel and improved recovery times. There is also the opportunity for the technology to be used for mass production of stents, potentially at lower cost."

Subscribe to our newsletter

Related articles

A 3D printed device to excite nerves

A 3D printed device to excite nerves

A tiny, thin-film electrode with a 3D-printed housing has been implanted in the peripheral nervous system of songbirds, where it successfully recorded electrical impulses that drive vocalizations.

3D printed artery monitors blockages from the inside

3D printed artery monitors blockages from the inside

Engineers are developing a 3D printed artificial blood vessel that allows doctors and patients to keep tabs on its health remotely.

3D-printed bioresorbable airway stent

3D-printed bioresorbable airway stent

Researchers are using 3D printing to produce a new type of bioresorbable airway stent. This could greatly simplify the future treatment of upper airway obstruction.

Bioprinted heart provides new tool for surgeons

Bioprinted heart provides new tool for surgeons

Surgeons will soon have a powerful new tool for planning and practice with the creation of the first full-sized 3D bioprinted model of the human heart.

3D printed stents treat inflammation

3D printed stents treat inflammation

Researchers have produced biodegradable stents with esophageal-derived bioink to directly treat radiation esophagitis.

Aerogel: the micro structural material of the future

Aerogel: the micro structural material of the future

In a research-first, scientists from Empa were able to 3D print stable well-shaped microstructures made from silica aerogels for use in biotechnology and precision engineering.

Medical customers adopt Stratasys 3D Printer

Medical customers adopt Stratasys 3D Printer

Stratasys Ltd. announced it has successfully sold and installed the J750 Digital Anatomy 3D printer at healthcare institutions and medical service providers in major markets across the globe.

Cardiac patch treats heart disease

Cardiac patch treats heart disease

Researchers have developed rubbery a bioelectronic implantable device that can monitor and treat heart diseases.

Coating implants with 'artificial bone' prevents inflammation

Coating implants with 'artificial bone' prevents inflammation

Researchers have developed a ceramic artificial bone coating with triple the adhesion strength compared to conventional coating materials.

Popular articles