AI accurately detects COVID-19 on chest x-rays

Researchers at Northwestern University have developed a new artificial intelligence platform that detects COVID-19 by analyzing X-ray images of the lungs.

Photo
Generated heatmaps appropriately highlighted abnormalities in the lung fields in those images accurately labeled as COVID-19 positive (A-C) in contrast to images which were accurately labeled as negative for COVID-19 (D). Intensity of colors on the heatmap correspond to features of the image that are important for prediction of COVID-19 positivity.
Source: Northwestern University

Called DeepCOVID-XR, the machine learning algorithm outperformed a team of specialized thoracic radiologists - spotting COVID-19 in X-rays about 10 times faster and 1-6% more accurately.

The researchers believe physicians could use the AI system to rapidly screen patients who are admitted into hospitals for reasons other than COVID-19. Faster, earlier detection of the highly contagious virus could potentially protect health care workers and other patients by triggering the positive patient to isolate sooner.

The study's authors also believe the algorithm could potentially flag patients for isolation and testing who are not otherwise under investigation for COVID-19. "We are not aiming to replace actual testing," said Aggelos Katsaggelos, Joseph Cummings Professor of Electrical and Computer Engineering in Northwestern's McCormick School of Engineering. "X-rays are routine, safe and inexpensive. It would take seconds for our system to screen a patient and determine if that patient needs to be isolated."

"It could take hours or days to receive results from a COVID-19 test," said Dr. Ramsey Wehbe, a cardiologist and postdoctoral fellow in A.I. at the Northwestern Medicine Bluhm Cardiovascular Institute. "AI doesn't confirm whether or not someone has the virus. But if we can flag a patient with this algorithm, we could speed up triage before the test results come back."

A trained eye

For many patients with COVID-19, chest X-rays display similar patterns. Instead of clear, healthy lungs, their lungs appear patchy and hazy. "Many patients with COVID-19 have characteristic findings on their chest images," Wehbe said. "These include 'bilateral consolidations.' The lungs are filled with fluid and inflamed, particularly along the lower lobes and periphery."

The problem is that pneumonia, heart failure and other illnesses in the lungs can look similar on X-rays. It takes a trained eye to tell the difference between COVID-19 and something less contagious.

Katsaggelos' laboratory specializes in using AI for medical imaging. He and Wehbe had already been working together on cardiology imaging projects and wondered if they could develop a new system to help fight the pandemic. "When the pandemic started to ramp up in Chicago, we asked each other if there was anything we could do," Wehbe said. "We were working on medical imaging projects using cardiac echo and nuclear imaging. We felt like we could pivot and apply our joint expertise to help in the fight against COVID-19."

AI vs. human

To develop, train and test the new algorithm, the researchers used 17,002 chest X-ray images -- the largest published clinical dataset of chest X-rays from the COVID-19 era used to train an AI system. Of those images, 5,445 came from COVID-19-positive patients from sites across the Northwestern Memorial Healthcare System.

The team then tested DeepCOVID-XR against five experienced cardiothoracic fellowship-trained radiologists on 300 random test images from Lake Forest Hospital. Each radiologist took approximately two-and-a-half to three-and-a-half hours to examine this set of images, whereas the AI system took about 18 minutes.

The radiologists' accuracy ranged from 76-81%. DeepCOVID-XR performed slightly better at 82% accuracy. "These are experts who are sub-specialty trained in reading chest imaging," Wehbe said. "Whereas the majority of chest X-rays are read by general radiologists or initially interpreted by non-radiologists, such as the treating clinician. A lot of times decisions are made based off that initial interpretation."

"Radiologists are expensive and not always available," Katsaggelos said. "X-rays are inexpensive and already a common element of routine care. This could potentially save money and time -- especially because timing is so critical when working with COVID-19."

Limits to diagnosis

Of course, not all COVID-19 patients show any sign of illness, including on their chest X-rays. Especially early in the virus' progression, patients likely will not yet have manifestations on their lungs. "In those cases, the AI system will not flag the patient as positive," Wehbe said. "But neither would a radiologist. Clearly there is a limit to radiologic diagnosis of COVID-19, which is why we wouldn't use this to replace testing."

The Northwestern researchers have made the algorithm publicly available with hopes that others can continue to train it with new data. Right now, DeepCOVID-XR is still in the research phase, but could potentially be used in the clinical setting in the future.

The study was published in the journal Radiology.

Subscribe to our newsletter

Related articles

Using machine learning to detect COVID-19 in X-rays

Using machine learning to detect COVID-19 in X-rays

Students at Cranfield University have designed computer models that can identify COVID-19 in X-rays.

AI-based chest X-ray diagnosis tech approved

AI-based chest X-ray diagnosis tech approved

behold.ai has been issued with a CE Mark Class lla certification in the UK and EU for its AI-based technology that can diagnose chest X-rays as ‘normal’.

Machine learning algorithm detects early stages of Alzheimer's

Machine learning algorithm detects early stages of Alzheimer's

An artificial intelligence-based detects early stages of Alzheimer’s through functional magnetic resonance imaging.

AI detects osteoarthritis years before it develops

AI detects osteoarthritis years before it develops

Researchers have created a machine learning algorithm that can detect subtle signs of osteoarthritis on an MRI scan taken years before symptoms even begin.

Self-learning algorithms analyze imaging data

Self-learning algorithms analyze imaging data

Artificial neural networks open up new possibilities in interpreting the time-consuming imaging ´data.

Smartwatch can detect early signs of illness

Smartwatch can detect early signs of illness

Researchers have developed a smartwatch app designed to alert users when their bodies show signs of fighting an infection, such as elevated heart rate.

AI sees and hears COVID-19 in your lungs

AI sees and hears COVID-19 in your lungs

Two deep learning algorithms that identify patterns of COVID-19 in lung images and breath sounds, may help in the fight against other respiratory diseases and the growing challenge of antibiotic resistance.

How AI can improve medical imaging

How AI can improve medical imaging

AI offers not only the possibility of better detection of a tumor, a skin lesion or some other indication but also can improve accuracy and efficiency for radiologists.

Deep learning enables screening for eye disease

Deep learning enables screening for eye disease

Researchers created a novel deep learning method that makes automated screenings for eye diseases such as diabetic retinopathy more efficient.

Popular articles