Eight simulations of melanoma cell image traces converted with AI software to...
Eight simulations of melanoma cell image traces converted with AI software to show, from left to right, a state of highly metastatic potential to low metastatic potential. Highly metastatic cells tend to extend finger-like protrusions (pseudopodia) and the cell body scatters more light, which relates to a rearrangement of cellular organelles.
Source: Andrew Jamieson

AI assesses metastatic potential in skin cancers

Using artificial intelligence (AI), researchers from UT Southwestern have developed a way to accurately predict which skin cancers are highly metastatic. The findings show the potential for AI-based tools to revolutionize pathology for cancer and a variety of other diseases.

“We now have a general framework that allows us to take tissue samples and predict mechanisms inside cells that drive disease, mechanisms that are currently inaccessible in any other way,” said study leader Gaudenz Danuser, Ph.D., Professor and Chair of the Lyda Hill Department of Bioinformatics at UTSW.

AI technology has significantly advanced over the past several years, Dr. Danuser explained, with deep learning-based methods able to distinguish minute differences in images that are essentially invisible to the human eye. Researchers have proposed using this latent information to look for differences in disease characteristics that could offer insight on prognoses or guide treatments. However, he said, the differences distinguished by AI are generally not interpretable in terms of specific cellular characteristics – a drawback that has made AI a tough sell for clinical use.

To overcome this challenge, Dr. Danuser and his colleagues used AI to search for differences between images of melanoma cells with high and low metastatic potential – a characteristic that can mean life or death for patients with skin cancer – and then reverse-engineered their findings to figure out which features in these images were responsible for the differences.

Using tumor samples from seven patients and available information on their disease progression, including metastasis, the researchers took videos of about 12,000 random cells living in petri dishes, generating about 1,700,000 raw images. The researchers then used an AI algorithm to pull 56 different abstract numerical features from these images.

Dr. Danuser and his colleagues found one feature that was able to accurately discriminate between cells with high and low metastatic potential. By manipulating this abstract numerical feature, they produced artificial images that exaggerated visible characteristics inherent to metastasis that human eyes cannot detect, he added. The highly metastatic cells produced slightly more pseudopodial extensions – a type of fingerlike projection – and had increased light scattering, an effect that may be due to subtle rearrangements of cellular organelles.

To further prove the utility of this tool, the researchers first classified the metastatic potential of cells from human melanomas that had been frozen and cultured in petri dishes for 30 years, and then implanted them into mice. Those predicted to be highly metastatic formed tumors that readily spread throughout the animals, while those predicted to have low metastatic potential spread little or not at all.

Dr. Danuser, a Professor of Cell Biology at UT Southwestern, noted that this method needs further study before it becomes part of clinical care. But eventually, he added, it may be possible to use AI to distinguish important features of cancers and other diseases.

The study was published in Cell Systems.

Subscribe to our newsletter

Related articles

A pen to pin down the fringes of cancer

A pen to pin down the fringes of cancer

The MasSpec Pen has shown to accurately differentiate healthy and cancerous tissue from banked pancreas samples during surgery.

MasSpec Pen shows promise in pancreatic cancer surgery

MasSpec Pen shows promise in pancreatic cancer surgery

The MasSpec Pen has shown to accurately identify tissues and surgical margins directly in patients and differentiate healthy and cancerous tissue from banked pancreas samples.

AI method can detect precursors to cervical cancer

AI method can detect precursors to cervical cancer

Using AI and mobile digital microscopy, researchers hope to create screening tools that can detect precursors to cervical cancer in women in resource-limited settings.

AI detects even the smallest metastases

AI detects even the smallest metastases

Researchers have developed a new algorithm that enables automated detection of metastases at the level of single disseminated cancer cells in whole mice.

ConvPath software uses AI to identify cancer cells

ConvPath software uses AI to identify cancer cells

A software tool uses artificial intelligence to recognize cancer cells from digital pathology images — giving clinicians a powerful way of predicting patient outcomes.

Deep learning identifies molecular patterns of cancer

Deep learning identifies molecular patterns of cancer

An AI platform can analyze genomic data extremely quickly, picking out key patterns to classify different types of colorectal tumors and improve the drug discovery process.

Cancer: AI identifyies patients for immunotherapy

Cancer: AI identifyies patients for immunotherapy

Stomach and colorectal cancer: Identifying patients at an early stage who are suitable for artificial intelligence immunotherapy.

AI picks up mutations in colorectal cancers

AI picks up mutations in colorectal cancers

A deep learning algorithm picks up molecular pathways and the development of key mutations more accurately than existing methods.

Hydrogel improves method to diagnose cancer

Hydrogel improves method to diagnose cancer

Researchers tested the effectiveness of specialized hydrogels.

Popular articles

Subscribe to Newsletter