Visualization on sample whole-slide images of the lung cancer histologic...
Visualization on sample whole-slide images of the lung cancer histologic patterns identified by pathologists compared to those detected by the new machine learning model. The team rendered the image by overlaying color-coded dots on patches based on decisions generated by their computer model. A subjective qualitative assessment by pathologist annotators confirmed that the patterns detected on each slide are on target.
Source: Hassanpour Lab, Dartmouth's Norris Cotton Cancer Center

AI classifies lung cancer slides at pathologist level

A team of research specialists at Dartmouth’s Norris Cotton Cancer Center have utilized machine learning capabilities to assist with the challenging task of grading tumor patterns and subtypes of lung adenocarcinoma, the most common form of the leading cause of cancer-related deaths worldwide.

Currently, lung adenocarcinoma, requires pathologist‘s visual examination of lobectomy slides to determine the tumor patterns and subtypes. This classification has an important role in prognosis and determination of treatment for lung cancer, however is a difficult and subjective task. Using recent advances in machine learning, the team, led by Saeed Hassanpour, Ph.D., developed a deep neural network to classify different types of lung adenocarcinoma on histopathology slides, and found that the model performed on par with three practicing pathologists. “Our study demonstrates that machine learning can achieve high performance on a challenging image classification task and has the potential to be an asset to lung cancer management,” says Hassanpour. “Clinical implementation of our system would be able to assist pathologists for accurate classification of lung cancer subtypes, which is critical for prognosis and treatment.”

Recognizing that the approach is potentially applicable to other histopathology image analysis tasks, Hassanpour’s team made their code publicly available to promote new research and collaborations in this domain.

In addition to testing the deep learning model in a clinical setting to validate its ability to improve lung cancer classification, the team plans to apply the method to other challenging histopathology image analysis tasks in breast, esophageal, and colorectal cancer. “If validated through clinical trials, our neural network model can potentially be implemented in clinical practice to assist pathologists,” says Hassanpour. “Our machine learning method is also fast and can process a slide in less than one minute, so it could help triage patients before examination by physicians and potentially greatly assist pathologists in the visual examination of slides.”

Subscribe to our newsletter

Related articles

Machine learning improves diagnostics of head and neck cancers

Machine learning improves diagnostics of head and neck cancers

Researchers used artificial intelligence to develop a new classification method which identifies the primary origins of cancerous tissue based on chemical DNA changes.

AI method can detect precursors to cervical cancer

AI method can detect precursors to cervical cancer

Using AI and mobile digital microscopy, researchers hope to create screening tools that can detect precursors to cervical cancer in women in resource-limited settings.

Lung cancer: AI could predict risk of recurrence

Lung cancer: AI could predict risk of recurrence

Computer scientists working with pathologists have trained an AI tool to determine which patients with lung cancer have a higher risk of their disease coming back after treatment.

AI model accurately classifies colorectal polyps

AI model accurately classifies colorectal polyps

An AI model for automated classification of colorectal polyps could benefit cancer screening programs by improving efficiency, reproducibility, and accuracy.

AI and laser-based imaging system identify brain tumors

AI and laser-based imaging system identify brain tumors

A novel method of combining advanced optical imaging with an artificial intelligence algorithm produces accurate, real-time intraoperative diagnosis of brain tumors.

Deep learning identifies molecular patterns of cancer

Deep learning identifies molecular patterns of cancer

An AI platform can analyze genomic data extremely quickly, picking out key patterns to classify different types of colorectal tumors and improve the drug discovery process.

AI system predicts which cancer patients benefit from immunotherapy

AI system predicts which cancer patients benefit from immunotherapy

Using machine learning, researchers have built a tool that detects genetic mutations that trigger the immune system, helping identify which cancer patients are likely to benefit from immunotherapy.

Using AI to predict risk of thyroid cancer on ultrasound

Using AI to predict risk of thyroid cancer on ultrasound

Researchers from Thomas Jefferson University use machine learning on ultrasound images of thyroid nodules to predict risk of malignancy.

Machine learning model predicts cancer patients’ symptoms

Machine learning model predicts cancer patients’ symptoms

Doctors could get a head start treating cancer thanks to new AI developed at the University of Surrey that is able to predict symptoms and their severity throughout the course of a patient’s treatment.

Popular articles

Subscribe to Newsletter