This illustration shows how artificial intelligence technology might be...
This illustration shows how artificial intelligence technology might be leveraged to predict a youth's risk for committing acts of school violence by analyzing linguistic patterns.
Source: Cincinnati Children's Hospital Medical Center

AI could help stem tide of school violence

By leveraging the basics of artificial intelligence (AI) technology now used to predict risk for suicide or other mental health issues, researchers developed an AI system that analyzes linguistic patterns to predict a youth’s risk for committing acts of school violence.

Study data show the system can detect the risk of aggression for individual subjects.

The AI system uses pattern-recognizing machine learning and natural language processing (NLP) technologies. It combines the analytical scope and speed of information technology with clinical risk-assessment data and practitioner expertise, thereby automating a complex and time-consuming process, according to Yizhao Ni, PhD, co-principal investigator and a clinical informatician in the Division of Biomedical Informatics.

The technology uncovered multiple warning signs that could deliver useful clinical insights to assist personalized interventions, Ni explained. When fully developed, the system’s built-in risk assessment scales and automated risk prediction algorithms should produce an accurate and scalable computerized screening service to prevent school violence.

“Students are physically or verbally bullied on school property, electronically through texting or social media, and youth violence costs society billions of dollars in healthcare expenses or lost productivity,” Ni said, citing data from the U.S. Centers for Disease Control and Prevention. “Our study demonstrates that overall, our AI system matches the clinical judgements and accuracy of psychiatrists 94 percent of the time. It has tremendous potential to help address youth violence at school and eventually other mental health conditions.”

Empowering a solution

Earlier research shows that using NLP and machine learning technologies pioneered at Cincinnati Children’s and elsewhere improve risk prediction for mental health problems like suicide. Current study authors note that so far there are no automated solutions developed to predict the risk for violent behaviors at school.

Recent advancements in school-based crime prevention programs demonstrate the best results occur when at-risk youth receive timely and individualized intervention, according to Drew Barzman, MD, co-principal investigator and director of the Child and Adolescent Forensic Psychiatry Service at Cincinnati Children’s.

But high patient need and busy clinical schedules can constrain the ability to complete the complex, labor intensive tasks needed for timely clinical evaluation of mental health patients. An effective automated system could help overcome this challenge and help mental health caregivers deliver timely interventions based on a youth’s individual needs, he said.

Study design

The study was tested by embedding it as a clinical service in the Division of Child and Adolescent Psychiatry at Cincinnati Children’s. The division’s inpatient units receive about 30,000 psychiatric admissions annually. Its outpatient clinic has over 52,000 patient visits every year.

Conducted between May 2015 and April 2018, the study prospectively recruited 131 students between ages 10 and 18 years from middle and high schools in Ohio, Kentucky, Indiana, and Tennessee.

Clinical assessments by psychiatrists indicated that 68 students (52 percent) were considered high risk toward others. For analysis with the AI assessment tool, the patients were segmented into smaller groups to compare the system’s predictive reliability when compared physician-generated patient clinical assessments. These comparisons yielded the AI system’s overall risk assessment match rate of 94 percent.

Future development plans for the tool include seeking research collaborations with other medical institutions and school systems to test live implementation in educational and medical settings, according to the researchers. Researchers said that based on funding capabilities, this will be the next phase of their work.

Subscribe to our newsletter

Related articles

Early detection of bipolar disorder with AI-based tool

Early detection of bipolar disorder with AI-based tool

Researchers have created a machine learning model that helps identify bipolar disorder at earlier stages.

mhealth: the digital placebo effect of health apps

mhealth: the digital placebo effect of health apps

Sharing information about the expected effect of a health app before its use and providing positive feedback regarding its effectiveness after its use have the potential to strengthen the placebo effect.

'Liquid' machine learning system adapts to changing conditions

'Liquid' machine learning system adapts to changing conditions

A machine learning system learns on the job. By continuously adapting to new data inputs, this “liquid network” could aid decision-making in medical diagnosis.

VR helps measure vulnerability to stress

VR helps measure vulnerability to stress

Behavioral scientists have developed a virtual reality test that assesses a person’s vulnerability to stress while exploring immersive environments.

Using AI to track pandemic’s impact on mental health

Using AI to track pandemic’s impact on mental health

Researchers have shown that they can measure those effects of the Corona pandemic on mental health by analyzing the language that people use to express their anxiety online.

AI models could predict outcomes in trauma

AI models could predict outcomes in trauma

AI has shown early success in improving survival and outcomes in traffic accident victims transported by ambulance and in predicting survival after liver transplantation.

Assessing mental illnesses through digital phenotyping

Assessing mental illnesses through digital phenotyping

Digital phenotyping and machine learning have emerged as promising tools for monitoring patients with psychosis spectrum illnesses.

Gamification: Intervention app may improve mental health

Gamification: Intervention app may improve mental health

A new randomized control trial has found that turning mobile mental health intervention into a smartphone game can potentially improve well-being.

AI finds COVID-19 needles in a coronavirus haystack

AI finds COVID-19 needles in a coronavirus haystack

Scientists have assembled a combination of data mining, machine-learning algorithms and compression-based analytics to bring the most useful data to the fore on an office computer.

Popular articles

Subscribe to Newsletter