Deep learning-based sensing of viruses using holography.
Deep learning-based sensing of viruses using holography.
Source: UCLA Engineering Institute for Technology

AI detects the presence of viruses

UCLA researchers have developed a rapid and automated biosensing method based on holography coupled with deep learning.

Many biosensing applications rely on characterization of specific analytes such as proteins, viruses and bacteria, among many other targets, which can be accomplished by using micro- or nano-scale particles. In such biosensors, these particles are coated with a surface chemistry that makes them stick to the target analyte forming clusters in response. The higher the target analyte concentration is, the larger the number of clusters gets. Therefore, monitoring and characterizing these particle clusters can tell us if the target analyte is present in a sample and in what concentration. Current methods to perform such an analysis are limited in that they are either capable of only a coarse readout or rely on expensive and bulky microscopes, which limit their applicability to address different biosensing needs, especially in resource limited environments.

To overcome the shortcomings of the existing solutions, UCLA researchers have developed a rapid and automated biosensing method based on holography coupled with deep learning. In this system, all the particle clusters and individual micro-particles in a sample are first imaged in 3D as holograms, all at the same time, and over a very large sample area of more than 20 mm2, more than ten-fold larger than the imaging area of a standard optical microscope. Next, a trained deep neural network processes these holograms and rapidly reconstructs them into images of clusters similar to those that could be obtained with a standard scanning microscope, but doing this much faster and for a significantly larger sample volume. During this process, all the particle clusters at the micro-scale (revealing the presence of the target analyte) are automatically counted with a sensitivity similar to a laboratory-grade microscope.

As a proof of concept, UCLA researchers successfully demonstrated the application of this deep learning-based biosensing approach to detect herpes simplex virus (HSV) and achieved a detection limit of ~ 5 viruses per micro-liter, providing a clinically relevant level of sensitivity for HSV detection. HSV is one of the most widespread viral infections that is estimated to have affected more than 50% of the adults in the US.

The research was led by Dr. Aydogan Ozcan, an associate director of the California NanoSystems Institute (CNSI) and the Chancellor’s Professor of electrical and computer engineering at the UCLA Henry Samueli School of Engineering and Applied Science, along with Yichen Wu, a graduate student, and Aniruddha Ray, a postdoctoral scholar, at the UCLA electrical and computer engineering department. “Our work demonstrates an automated, inexpensive platform for rapid read-out and quantification of a wide variety of particle clustering-based biosensors. This unique capability enabled by deep learning will help democratize biosensing instrumentation, making them suitable for wide-scale use even in developing countries,” said Ozcan.

Subscribe to our newsletter

Related articles

A novel swab design to augment COVID-19 testing

A novel swab design to augment COVID-19 testing

Scientists have developed a novel test swab that can be 3D printed using inexpensive, widely available materials and speedily assembled in a range of fabrication settings.

Fighting infectious diseases using AI

Fighting infectious diseases using AI

Researchers have harnessed the power of artificial intelligence to dramatically accelerate the discovery of drug combination therapies.

A biosensor for the COVID-19 virus

A biosensor for the COVID-19 virus

Researchers have developed a novel sensor for detecting the new coronavirus. In future it could be used to measure the concentration of the virus in the environment.

AI, App provide at-home assessment of coronavirus risk

AI, App provide at-home assessment of coronavirus risk

A coronavirus app coupled with machine intelligence will soon enable an individual to get an at-home risk assessment based on how they feel and where they've been in about a minute.

Biosensors detect for tumors and dengue fever

Biosensors detect for tumors and dengue fever

Researchers have developed a tumor biosensing chip that can help determine the optimum dosage of chemotherapy required for a cancer patient.

Organtransplantation: Biophotonic therapy kills infections

Organtransplantation: Biophotonic therapy kills infections

Scientists have developed a new technique for the decontamination of organs before transplantation using ultraviolet and red light irradiation.

Sensing tool could detect Dengue fever earlier

Sensing tool could detect Dengue fever earlier

Researchers from the University of Bath are developing a new tool for detecting the presence of Dengue fever early on, helping prevent people from suffering potential life-threatening complications.

‘Smart’ surfaces promise safer implants

‘Smart’ surfaces promise safer implants

Researchers design “smart” surfaces, creating promise for safer implants and more accurate diagnostic tests.

Smartphone, M.D.: BactiCount detects bacteria in 60 minutes

Smartphone, M.D.: BactiCount detects bacteria in 60 minutes

"BactiCount" app and lab kit allow a smartphone to identify bacteria that cause urinary tract infections from patients anywhere in the world.

Popular articles