Deep learning-based sensing of viruses using holography.
Deep learning-based sensing of viruses using holography.
Source: UCLA Engineering Institute for Technology

AI detects the presence of viruses

UCLA researchers have developed a rapid and automated biosensing method based on holography coupled with deep learning.

Many biosensing applications rely on characterization of specific analytes such as proteins, viruses and bacteria, among many other targets, which can be accomplished by using micro- or nano-scale particles. In such biosensors, these particles are coated with a surface chemistry that makes them stick to the target analyte forming clusters in response. The higher the target analyte concentration is, the larger the number of clusters gets. Therefore, monitoring and characterizing these particle clusters can tell us if the target analyte is present in a sample and in what concentration. Current methods to perform such an analysis are limited in that they are either capable of only a coarse readout or rely on expensive and bulky microscopes, which limit their applicability to address different biosensing needs, especially in resource limited environments.

To overcome the shortcomings of the existing solutions, UCLA researchers have developed a rapid and automated biosensing method based on holography coupled with deep learning. In this system, all the particle clusters and individual micro-particles in a sample are first imaged in 3D as holograms, all at the same time, and over a very large sample area of more than 20 mm2, more than ten-fold larger than the imaging area of a standard optical microscope. Next, a trained deep neural network processes these holograms and rapidly reconstructs them into images of clusters similar to those that could be obtained with a standard scanning microscope, but doing this much faster and for a significantly larger sample volume. During this process, all the particle clusters at the micro-scale (revealing the presence of the target analyte) are automatically counted with a sensitivity similar to a laboratory-grade microscope.

As a proof of concept, UCLA researchers successfully demonstrated the application of this deep learning-based biosensing approach to detect herpes simplex virus (HSV) and achieved a detection limit of ~ 5 viruses per micro-liter, providing a clinically relevant level of sensitivity for HSV detection. HSV is one of the most widespread viral infections that is estimated to have affected more than 50% of the adults in the US.

The research was led by Dr. Aydogan Ozcan, an associate director of the California NanoSystems Institute (CNSI) and the Chancellor’s Professor of electrical and computer engineering at the UCLA Henry Samueli School of Engineering and Applied Science, along with Yichen Wu, a graduate student, and Aniruddha Ray, a postdoctoral scholar, at the UCLA electrical and computer engineering department. “Our work demonstrates an automated, inexpensive platform for rapid read-out and quantification of a wide variety of particle clustering-based biosensors. This unique capability enabled by deep learning will help democratize biosensing instrumentation, making them suitable for wide-scale use even in developing countries,” said Ozcan.

Subscribe to our newsletter

Related articles

Biosensors quickly spot coronavirus proteins, antibodies

Biosensors quickly spot coronavirus proteins, antibodies

Scientists have created a new way to detect the proteins that make up the pandemic coronavirus, as well as antibodies against it.

A bifunctional biosensor detects COVID-19

A bifunctional biosensor detects COVID-19

How fast could SARS-CoV-2 be detected? Researchers have developed an accurate, high-speed, and portable detector for COVID-19.

Holographic imaging to detect viruses

Holographic imaging to detect viruses

A new approach using holographic imaging to detect both viruses and antibodies has the potential to aid in medical diagnoses and, specifically, those related to the COVID-19 pandemic.

Nanotechnology provides rapid visual detection of COVID-19

Nanotechnology provides rapid visual detection of COVID-19

Scientists have developed an experimental diagnostic test for COVID-19 that can visually detect the presence of the virus in 10 minutes.

A smartwatch-based algorithm to detect viral infections

A smartwatch-based algorithm to detect viral infections

Purdue University engineers and physIQ have developed a viral detection algorithm for smartwatches.

Antibiotic levels measured in breath

Antibiotic levels measured in breath

Researchers have shown in mammals that the concentration of antibiotics in the body can be determined using breath samples.

Device diagnoses Covid-19 from saliva samples

Device diagnoses Covid-19 from saliva samples

Engineers have designed a device that can detect SARS-CoV-2 from a saliva sample in about an hour. They showed that the diagnostic is just as accurate as the PCR tests now used.

'Origami' testing app tackles spread of malaria

'Origami' testing app tackles spread of malaria

A new approach to tackling the spread of malaria in sub-Saharan Africa, which combines affordable, easy-to-administer blood tests with machine learning and unbreakable encryption, has generated encouraging early results in Uganda.

Deep learning-based holographic point-of-care sensor

Deep learning-based holographic point-of-care sensor

Researchers have developed a rapid and cost-effective particle agglutination based sensor that is powered by holographic imaging and deep learning

Popular articles

Subscribe to Newsletter