AI enhances predictions of COVID-19 outcomes

AI enhances predictions of COVID-19 outcomes

Mount Sinai researchers have published one of the first studies using a machine learning technique called "federated learning" to examine electronic health records to better predict how COVID-19 patients will progress.

The researchers said the emerging technique holds promise to create more robust machine learning models that extend beyond a single health system without compromising patient privacy. These models, in turn, can help triage patients and improve the quality of their care.

Federated learning is a technique that trains an algorithm across multiple devices or servers holding local data samples but avoids clinical data aggregation, which is undesirable for reasons including patient privacy issues. Mount Sinai researchers implemented and assessed federated learning models using data from electronic health records at five separate hospitals within the Health System to predict mortality in COVID-19 patients. They compared the performance of a federated model against ones built using data from each hospital separately, referred to as local models. After training their models on a federated network and testing the data of local models at each hospital, the researchers found the federated models demonstrated enhanced predictive power and outperformed local models at most of the hospitals.

"Machine learning models in health care often require diverse and large-scale data to be robust and translatable outside the patient population they were trained on," said the study's corresponding author, Benjamin Glicksberg, PhD, Assistant Professor of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, and member of the Hasso Plattner Institute for Digital Health at Mount Sinai and the Mount Sinai Clinical Intelligence Center. "Federated learning is gaining traction within the biomedical space as a way for models to learn from many sources without exposing any sensitive patient data. In our work, we demonstrate that this strategy can be particularly useful in situations like COVID-19."

Machine learning models built within a hospital are not always effective for other patient populations, partially due to models being trained on data from a single group of patients which is not representative of the entire population.

Recommended article

"Machine learning in health care continues to suffer a reproducibility crisis," said the study's first author, Akhil Vaid, MD, postdoctoral fellow in the Department of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, and member of the Hasso Plattner Institute for Digital Health at Mount Sinai and the Mount Sinai Clinical Intelligence Center. "We hope that this work showcases benefits and limitations of using federated learning with electronic health records for a disease that has a relative dearth of data in an individual hospital. Models built using this federated approach outperform those built separately from limited sample sizes of isolated hospitals. It will be exciting to see the results of larger initiatives of this kind."

The study was published in the Journal of Medical Internet Research - Medical Informatics.

Subscribe to our newsletter

Related articles

AI accurately detects COVID-19 on chest x-rays

AI accurately detects COVID-19 on chest x-rays

Researchers have developed a new AI platform that detects COVID-19 by analyzing X-ray images of the lungs.

Sorting out viruses with machine learning

Sorting out viruses with machine learning

Scientists develop a label-free method for identifying respiratory viruses based on changes in electrical current when they pass through silicon nanopores.

Using AI to track pandemic’s impact on mental health

Using AI to track pandemic’s impact on mental health

Researchers have shown that they can measure those effects of the Corona pandemic on mental health by analyzing the language that people use to express their anxiety online.

AI model detects Covid-19 infections through coughs

AI model detects Covid-19 infections through coughs

Researchers have found that people who are asymptomatic for Covid-19 may differ from healthy individuals in the way that they cough.

AI signals a possible disease resurgence

AI signals a possible disease resurgence

Scientists have used machine learning to predict the reemergence of existing infectious diseases.

AI finds COVID-19 needles in a coronavirus haystack

AI finds COVID-19 needles in a coronavirus haystack

Scientists have assembled a combination of data mining, machine-learning algorithms and compression-based analytics to bring the most useful data to the fore on an office computer.

Using machine learning to estimate COVID-19’s seasonal cycle

Using machine learning to estimate COVID-19’s seasonal cycle

Scientists are launching a project to apply machine learning methods to assess the role of climate variables in disease transmission

Machine learning system crack COVID-19 genome signature

Machine learning system crack COVID-19 genome signature

Using machine learning, a team of Western computer scientists and biologists have identified an underlying genomic signature for 29 different COVID-19 DNA sequences.

How AI can help slow down future pandemics

How AI can help slow down future pandemics

Researchers have investigated how machine learning can be used to find effective testing methods during epidemic outbreaks, thereby helping to better control the outbreaks.

Popular articles

Subscribe to Newsletter