AI finds disease-related genes

An artificial neural network can reveal patterns in huge amounts of gene expression data, and discover groups of disease-related genes. This has been shown by a new study led by researchers at Linköping University. The scientists hope that the method can eventually be applied within precision medicine and individualised treatment.

Photo
Artificial neural networks are excellent at learning how to find patterns in enormous amounts of complex data.
Source: metamorworks

It’s common when using social media that the platform suggests people whom you may want to add as friends. The suggestion is based on you and the other person having common contacts, which indicates that you may know each other. In a similar manner, scientists are creating maps of biological networks based on how different proteins or genes interact with each other. The researchers behind a new study have used artificial intelligence, AI, to investigate whether it is possible to discover biological networks using deep learning, in which entities known as “artificial neural networks” are trained by experimental data. Since artificial neural networks are excellent at learning how to find patterns in enormous amounts of complex data, they are used in applications such as image recognition. However, this machine learning method has until now seldom been used in biological research.

“We have for the first time used deep learning to find disease-related genes. This is a very powerful method in the analysis of huge amounts of biological information, or ‘big data’”, says Sanjiv Dwivedi, postdoc in the Department of Physics, Chemistry and Biology (IFM) at Linköping University.

The scientists used a large database with information about the expression patterns of 20,000 genes in a large number of people. The information was “unsorted”, in the sense that the researchers did not give the artificial neural network information about which gene expression patterns were from people with diseases, and which were from healthy people. The AI model was then trained to find patterns of gene expression.

One of the challenges of machine learning is that it is not possible to see exactly how an artificial neural network solves a task. AI is sometimes described as a “black box” – we see only the information that we put into the box and the result that it produces. We cannot see the steps between. Artificial neural networks consist of several layers in which information is mathematically processed. The network comprises an input layer and an output layer that delivers the result of the information processing carried out by the system. Between these two layers are several hidden layers in which calculations are carried out. When the scientists had trained the artificial neural network, they wondered whether it was possible to, in a manner of speaking, lift the lid of the black box and understand how it works. Are the designs of the neural network and the familiar biological networks similar? “When we analysed our neural network, it turned out that the first hidden layer represented to a large extent interactions between various proteins. Deeper in the model, in contrast, on the third level, we found groups of different cell types. It’s extremely interesting that this type of biologically relevant grouping is automatically produced, given that our network has started from unclassified gene expression data”, says Mika Gustafsson, senior lecturer at IFM.

The scientists then investigated whether their model of gene expression could be used to determine which gene expression patterns are associated with disease and which is normal. They confirmed that the model finds relevant patterns that agree well with biological mechanisms in the body. Since the model has been trained using unclassified data, it is possible that the artificial neural network has found totally new patterns. The researchers plan now to investigate whether such, previously unknown patterns, are relevant from a biological perspective.
“We believe that the key to progress in the field is to understand the neural network. This can teach us new things about biological contexts, such as diseases in which many factors interact. And we believe that our method gives models that are easier to generalise and that can be used for many different types of biological information”, says Mika Gustafsson.

Subscribe to our newsletter

Related articles

Researchers psychoanalyse artificial intelligence

Researchers psychoanalyse artificial intelligence

We can run tests and experiments, but we cannot always predict and understand why AI does what it does.

The progress and risks of artificial intelligence

The progress and risks of artificial intelligence

Artificial intelligence has reached a critical turning point in its evolution, according to an international panel of experts.

'Liquid' machine learning system adapts to changing conditions

'Liquid' machine learning system adapts to changing conditions

A machine learning system learns on the job. By continuously adapting to new data inputs, this “liquid network” could aid decision-making in medical diagnosis.

AI in healthcare – hype, hope and reality

AI in healthcare – hype, hope and reality

Currently, we are too focused on the topic of AI. In order, however, to leverage AI technology several challenges have to be mastered and a proper framework has to be established.

AI picks up mutations in colorectal cancers

AI picks up mutations in colorectal cancers

A deep learning algorithm picks up molecular pathways and the development of key mutations more accurately than existing methods.

An AI that ‘thinks’ like humans

An AI that ‘thinks’ like humans

Creating human-like AI is about more than mimicking human behaviour – technology must also be able to process information, or ‘think’, if it is to be fully relied upon.

Reconstruction of 3D micro-CT images with the help of machine learning

Reconstruction of 3D micro-CT images with the help of machine learning

Researchers have used machine learning to help reconstruct three-dimensional micro-CT images of fibrous materials.

Deep learning helps visualize X-ray data in 3D

Deep learning helps visualize X-ray data in 3D

Scientists have leveraged artificial intelligence to train computers to keep up with the massive amounts of X-ray data taken at the Advanced Photon Source.

Liquid metal sensors and AI used for prosthetics

Liquid metal sensors and AI used for prosthetics

For the first time, researchers incorporated stretchable tactile sensors using liquid metal on the fingertips of a prosthetic hand.

Popular articles

Subscribe to Newsletter