Example of segmentation produced by the tool which separates the structures in...
Example of segmentation produced by the tool which separates the structures in cerebrospinal fluid (red), grey matter (blue) and white matter (yellow) from MRI images T2 (middle column) and T1 (right column).
Source: CHU Sainte-Justine

AI for very young brains

Scientists have developed an innovative new technique that uses artificial intelligence to better define the different sections of the brain in newborns during a magnetic resonance imaging (MRI) exam.

"This is one of the first times that artificial intelligence has been used to better define the different parts of a newborn's brain on an MRI: namely the grey matter, white matter and cerebrospinal fluid," said Dr. Gregory A. Lodygensky, a neonatologist at CHU Sainte-Justine and professor at Université de Montréal. "Until today, the tools available were complex, often intermingled and difficult to access," he added.

In collaboration with Professor Jose Dolz, an expert in medical image analysis and machine learning at ÉTS, the researchers were able to adapt the tools to the specificities of the neonatal setting and then validate them.

This new technique allows babies' brains to be examined quickly, accurately and reliably. Scientists see it as a major asset for supporting research that not only addresses brain development in neonatal care, but also the effectiveness of neuroprotective strategies.

In evaluating a range of tools available in artificial intelligence, CHU Sainte-Justine researchers found that these tools had limitations, particularly with respect to pediatric research. Today's neuroimaging analysis programs are primarily designed to work on "adult" MRIs. The cerebral immaturity of newborns, with an inversion of the contrasts between grey matter and white matter, complicates such analyses.

Inspired by Dolz's most recent work, the researchers proposed an artificial neural network that learns how to efficiently combine information from several MRI sequences. This methodology made it possible to better define the different parts of the brain in the newborn automatically and to establish a new benchmark for this problem. "We've decided not only to share the results of our study on open source, but also the computer code, so that brain researchers everywhere can take advantage of it, all of which benefits patients," said Dolz.

CHU Sainte-Justine is one of the most important players in the Canadian Neonatal Brain Platform and also has one of the largest neonatal units in Canada specializing in neurodevelopment. As part of the platform, research teams are implementing projects like this one with the aim of improving the long-term health of those newborns who are most vulnerable to brain injury.

"In studies to assess the positive and negative impact of different therapies on the maturation of babies' brains, we need to have the ability to quantify brain structures with certainty and reliability," Lodygensky said. "By offering the scientific community the fruits of all our discoveries, we are helping them, while generating an extraordinary benefit for at-risk newborns."

He added: "We now want to democratize this tool so that it becomes the benchmark for the study of brain structure in newborns around the world. To this end, we are continuing to work on its generalizability -- that is, its use on MRI data acquired in different hospitals."

Subscribe to our newsletter

Related articles

Biomedical research: deep learning outperforms machine learning

Biomedical research: deep learning outperforms machine learning

Deep-learning methods have the potential to offer substantially better results, generating superior representations for characterizing the human brain.

Federated learning allows hospitals to share data privately

Federated learning allows hospitals to share data privately

Researchers have shown that federated learning is successful in the context of brain imaging, by being able to analyze MRI scans of brain tumor patients and distinguish healthy brain tissue from cancerous regions.

How many gender subtypes exist in the brain?

How many gender subtypes exist in the brain?

New machine learning study suggest the presence of at least nine gender “expressions”.

AI & MRI look into the genome of brain tumors

AI & MRI look into the genome of brain tumors

Researcher have developed a computer method that uses MRI and machine learning to rapidly forecast genetic mutations in glioma tumors,

From one brain scan, more information for the AI

From one brain scan, more information for the AI

Researchers have developed a system thar helps machine learning models glean training information for diagnosing and treating brain conditions.

‘Uncanny Valley’: Brain network evaluates robot likeability

‘Uncanny Valley’: Brain network evaluates robot likeability

Scientists have identified mechanisms in the human brain that could help explain the the unsettling feeling we get from robots and virtual agents that are too human-like.

Deep learning-based image segmentation

Deep learning-based image segmentation

Scientists have presented a new method for configuring self-learning algorithms for a large number of different imaging datasets – without the need for specialist knowledge or very significant computing power.

Deep learning tool measures volume of cerebral ventricles

Deep learning tool measures volume of cerebral ventricles

Researchers have developed an AI tool that can measure the volume of cerebral ventricles on MRIs in children within about 25 minutes.

How AI can improve medical imaging

How AI can improve medical imaging

AI offers not only the possibility of better detection of a tumor, a skin lesion or some other indication but also can improve accuracy and efficiency for radiologists.

Popular articles