Example of full-dose, 10 percent low-dose and algorithm-enhanced low-dose.
Example of full-dose, 10 percent low-dose and algorithm-enhanced low-dose.
Source: RSNA

AI may help reduce gadolinium dose in MRI

Researchers are using artificial intelligence to reduce the dose of a contrast agent that may be left behind in the body after MRI exams, according to a study presented at the annual meeting of the Radiological Society of North America (RSNA).

Gadolinium is a heavy metal used in contrast material that enhances images on MRI. Recent studies have found that trace amounts of the metal remain in the bodies of people who have undergone exams with certain types of gadolinium. The effects of this deposition are not known, but radiologists are working proactively to optimize patient safety while preserving the important information that gadolinium-enhanced MRI scans provide. “There is concrete evidence that gadolinium deposits in the brain and body,” said study lead author Enhao Gong, Ph.D., researcher at Stanford University. “While the implications of this are unclear, mitigating potential patient risks while maximizing the clinical value of the MRI exams is imperative.”

Dr. Gong and colleagues at Stanford have been studying deep learning as a way to achieve this goal. Deep learning is a sophisticated artificial intelligence technique that teaches computers by examples. Through use of models called convolutional neural networks, the computer can not only recognize images but also find subtle distinctions among the imaging data that a human observer might not be capable of discerning.

Imaging protocol used with 3 different MR series at different contrast doses.
Imaging protocol used with 3 different MR series at different contrast doses.
Source: RSNA

To train the deep learning algorithm, the researchers used MR images from 200 patients who had received contrast-enhanced MRI exams for a variety of indications. They collected three sets of images for each patient: pre-contrast scans, done prior to contrast administration and referred to as the zero-dose scans; low-dose scans, acquired after 10 percent of the standard gadolinium dose administration; and full-dose scans, acquired after 100 percent dose administration.

The algorithm learned to approximate the full-dose scans from the zero-dose and low-dose images. Neuroradiologists then evaluated the images for contrast enhancement and overall quality.

Results showed that the image quality was not significantly different between the low-dose, algorithm-enhanced MR images and the full-dose, contrast-enhanced MR images. The initial results also demonstrated the potential for creating the equivalent of full-dose, contrast-enhanced MR images without any contrast agent use.

These findings suggest the method’s potential for dramatically reducing gadolinium dose without sacrificing diagnostic quality, according to Dr. Gong. “Low-dose gadolinium images yield significant untapped clinically useful information that is accessible now by using deep learning and AI,” he said.

Now that the researchers have shown that the method is technically possible, they want to study it further in the clinical setting, where Dr. Gong believes it will ultimately find a home. Future research will include evaluation of the algorithm across a broader range of MRI scanners and with different types of contrast agents. “We’re not trying to replace existing imaging technology,” Dr. Gong said. “We’re trying to improve it and generate more value from the existing information while looking out for the safety of our patients.”

Subscribe to our newsletter

Related articles

Deep learning: classifying brain tumors with a single 3D MRI scan

Deep learning: classifying brain tumors with a single 3D MRI scan

A team of researchers at Washington University School of Medicine have developed a deep learning model that is capable of classifying a brain tumor as one of six common types using a single 3D MRI scan.

Image fusion method uses AI to improve outcomes

Image fusion method uses AI to improve outcomes

Researchers have developed a new "multi-modal" image fusion method based on supervised deep learning that enhances image clarity, reduces redundant image features and supports batch processing.

Biomedical research: deep learning outperforms machine learning

Biomedical research: deep learning outperforms machine learning

Deep-learning methods have the potential to offer substantially better results, generating superior representations for characterizing the human brain.

Deep learning-based image segmentation

Deep learning-based image segmentation

Scientists have presented a new method for configuring self-learning algorithms for a large number of different imaging datasets – without the need for specialist knowledge or very significant computing power.

Deep learning tool measures volume of cerebral ventricles

Deep learning tool measures volume of cerebral ventricles

Researchers have developed an AI tool that can measure the volume of cerebral ventricles on MRIs in children within about 25 minutes.

How AI can improve medical imaging

How AI can improve medical imaging

AI offers not only the possibility of better detection of a tumor, a skin lesion or some other indication but also can improve accuracy and efficiency for radiologists.

Machine learning algorithm detects early stages of Alzheimer's

Machine learning algorithm detects early stages of Alzheimer's

An artificial intelligence-based detects early stages of Alzheimer’s through functional magnetic resonance imaging.

Deep learning platform accurately diagnoses dystonia

Deep learning platform accurately diagnoses dystonia

Researchers have developed a unique diagnostic tool that can detect dystonia from MRI scans, the first technology of its kind to provide an objective diagnosis of the disorder.

Using deep learning to diagnose autism

Using deep learning to diagnose autism

Researchers have applied these artificial intelligence techniques to autism diagnosis.

Popular articles

Subscribe to Newsletter