AI predicts breast cancer risk factors

Researchers from University of Eastern Finland and Kuopio University Hospital report new innovative use of machine learning to help understand the interplay of genetic and other breast cancer risk factors.

Photo

New discoveries in recent years have identified several risk factors contributing to breast cancer risk. Approaches capable of merging genetic (SNPs) and non-genetic risk factors could identify individuals with a high risk of developing cancer and enable the development of risk-adapted screening programs for better cancer prevention. This could potentially improve the overall performance of BC screening and lead to an efficient allocation of clinical resources.

A major challenge in breast cancer risk prediction is to develop a model that incorporates all known and newly found risk factors while considering the interactions among them. The machine learning model developed at the Institute of Clinical Medicine, Pathology and Forensic Medicine at the University of Eastern Finland enables identifying combinations of interacting genetic variants and demographic risk factors of breast cancer, which can efficiently predict the breast cancer risk.

The machine learning approach is based on a gradient tree boosting method followed by an adaptive iterative search algorithm. The best identified features, i.e., interacting SNPs + demographic risk factors, are used to predict the breast cancer risk for an unknown individual. The analysis has been done on the Kuopio Breast Cancer Project (KBCP) data.

Interestingly, the gene interaction map of the SNPs, that were found to interact with the demographic risk factors, points to the prominent estrogen-related-linked network (ESR1 network). The gene interaction map additionally points to the FGFR2 gene, which is one of the most important genetic susceptibility loci in non-hereditary breast cancer.

Since cancer is a multi-factorial disease caused by lifestyle, genetic, and environmental factors, individual analysis of the sources of genetic variants may not be enough to create a comprehensive view of the disease risk. In Kuopio, we are now developing innovative machine learning approaches to combine different sources of data, such as mammographic features, concludes Hamid Behravan, a post-doc researcher specialized in AI and machine learning at Mannermaa cancer research laboratory.

The results were published in peer-reviewed Scientific Reports.

Subscribe to our newsletter

Related articles

Combination of AI and radiologists accurately identified breast cancer

Combination of AI and radiologists accurately identified breast cancer

An AI tool identified breast cancer with approximately 90 percent accuracy when combined with analysis by radiologists.

AI improves biomedical imaging

AI improves biomedical imaging

Researchers use artificial intelligence to improve quality of images recorded by a relatively new biomedical imaging method.

Machine learning helps diagnose leukemia

Machine learning helps diagnose leukemia

Researchers at the University of Bonn show how artificial intelligence improves the evaluation of blood analysis data.

A pen to pin down the fringes of cancer

A pen to pin down the fringes of cancer

The MasSpec Pen has shown to accurately differentiate healthy and cancerous tissue from banked pancreas samples during surgery.

Machine learning fuels personalised cancer medicine

Machine learning fuels personalised cancer medicine

A tool, based on machine learning methods, that evaluates the potential contribution of all possible mutations in a gene in a given type of tumour to the development and progression of cancer.

AI can identify cancerous cells by their acidity

AI can identify cancerous cells by their acidity

Using a special dye, cells are colored according to their pH, and a machine learning algorithm can detect changes in the color spectrum due to cancer.

AI system for the diagnosis of breast cancer

AI system for the diagnosis of breast cancer

Researchers have developed a new tissue-section analysis system for diagnosing breast cancer based on artificial intelligence.

AI identifies precancerous colon polyps

AI identifies precancerous colon polyps

A machine learning algorithm helps accurately differentiate benign and premalignant colorectal polyps on CT colonography scans.

Breast cancer-on-a-chip tests immunotherapy drugs

Breast cancer-on-a-chip tests immunotherapy drugs

Researchers have successfully designed and tested a system for rapid testing of large numbers of potential immunotherapy drugs.

Popular articles

Subscribe to Newsletter