An AI-inspired theory of dreaming

The overfitted brain: Our dreams' weirdness might be why we have them, argues a researchers in new theory of dreaming.

Photo
Illustration represents the overfitted brain hypothesis of dreaming, which claims that the sparse and hallucinatory quality of dreams is not a bug, but a feature, since it helps prevent the brain from overfitting to its biased daily sources of learning.
Source: Georgia Turner

The question of why we dream is a divisive topic within the scientific community: it's hard to prove concretely why dreams occur and the neuroscience field is saturated with hypotheses. Inspired by techniques used to train deep neural networks, Erik Hoel, a research assistant professor of neuroscience at Tufts University, argues for a new theory of dreams: the overfitted brain hypothesis. The hypothesis suggests that the strangeness of our dreams serves to help our brains better generalize our day-to-day experiences.

"There's obviously an incredible number of theories of why we dream," says Hoel. "But I wanted to bring to attention a theory of dreams that takes dreaming itself very seriously—that says the experience of dreams is why you're dreaming."

A common problem when it comes to training AI is that it becomes too familiar with the data it's trained on—it starts to assume that the training set is a perfect representation of anything it might encounter. Data scientists fix this by introducing some chaos into the data; in one such regularization method, called "dropout," some data is randomly ignored. Imagine if black boxes suddenly appeared on the internal screen of a self-driving car: the car that sees the random black boxes on the screen and focuses on overarching details of its surroundings, rather than the specifics of that particular driving experience, will likely better understand the general experience of driving.

"The original inspiration for deep neural networks was the brain," Hoel says. And while comparing the brain to technology is not new, he explains that using deep neural networks to describe the overfitted brain hypothesis was a natural connection. "If you look at the techniques that people use in regularization of deep learning, it's often the case that those techniques bear some striking similarities to dreams," he says.

With that in mind, his new theory suggests that dreams happen to make our understanding of the world less simplistic and more well-rounded—because our brains, like deep neural networks, also become too familiar with the "training set" of our everyday lives. To counteract the familiarity, he suggests, the brain creates a weirded version of the world in dreams, the mind's version of dropout. "It is the very strangeness of dreams in their divergence from waking experience that gives them their biological function," he writes.

Hoel says that there's already evidence from neuroscience research to support the overfitted brain hypothesis. For example, it's been shown that the most reliable way to prompt dreams about something that happens in real life is to repetitively perform a novel task while you are awake. He argues that when you over-train on a novel task, the condition of overfitting is triggered, and your brain attempts to then generalize for this task by creating dreams.

But he believes that there's also research that could be done to determine whether this is really why we dream. He says that well-designed behavioral tests could differentiate between generalization and memorization and the effect of sleep deprivation on both.

Another area he's interested to explore is on the idea of "artificial dreams." He came up with overfitted brain hypothesis while thinking about the purpose of works of fiction like film or novels. Now, he hypothesizes that outside stimuli like novels or TV shows might act as dream "substitutions"—and that they could perhaps even be designed to help delay the cognitive effects of sleep deprivation by emphasizing their dream-like nature (for instance, by virtual reality technology).

While you can simply turn off learning in artificial neural networks, Hoel says, you can't do that with a brain. Brains are always learning new things—and that's where the overfitted brain hypothesis comes in to help. "Life is boring sometimes," he says. "Dreams are there to keep you from becoming too fitted to the model of the world."

Hoel described his hypothesis in a review in the journal Patterns.

Subscribe to our newsletter

Related articles

AI predicts behavior

AI predicts behavior

An artificial neural network designed by an international team involving UCL can translate raw data from brain activity, paving the way for new discoveries and a closer integration between technology and the brain.

Smart biomarkers to empower drug development

Smart biomarkers to empower drug development

Researchers aim to speed up developing drugs against brain diseases through cutting-edge technology. They are generating an innovative technology platform based on high-density microelectrode arrays and 3D networks of human neurons.

Brain-on-a-chip would need little training

Brain-on-a-chip would need little training

A neural network that mimics the biology of the brain can be loaded onto a microchip for faster and more efficient artificial intelligence.

Memory abilities to make neural networks less 'forgetful'

Memory abilities to make neural networks less 'forgetful'

AI experts report that they have successfully addressed a major obstacle to increasing AI capabilities.

Neural networks: artificial brains need sleep too

Neural networks: artificial brains need sleep too

States that resemble sleep-like cycles in simulated neural networks quell the instability that comes with uninterrupted self-learning in artificial analogs of brains.

The progress and risks of artificial intelligence

The progress and risks of artificial intelligence

Artificial intelligence has reached a critical turning point in its evolution, according to an international panel of experts.

Deep learning helps visualize X-ray data in 3D

Deep learning helps visualize X-ray data in 3D

Scientists have leveraged artificial intelligence to train computers to keep up with the massive amounts of X-ray data taken at the Advanced Photon Source.

Neuroprosthesis decodes speech for paralyzed man

Neuroprosthesis decodes speech for paralyzed man

Researchers have developed a "speech neuroprosthesis" that has enabled a man with severe paralysis to communicate in sentences.

AI improves speech recognition in hearing aid

AI improves speech recognition in hearing aid

In noisy environments, it is difficult for hearing aid or hearing implant users to understand their conversational partner. Artificial intelligence could solve this problem.

Popular articles

Subscribe to Newsletter