A computer created facial images that appealed to individual preferences.
A computer created facial images that appealed to individual preferences.
Source: Cognitive computing-tutkimusryhmä

Brain-computer interface generates personally attractive images

Researchers have succeeded in making an AI understand our subjective notions of what makes faces attractive. The device demonstrated this knowledge by its ability to create new portraits that were tailored to be found personally attractive to individuals. The results can be used, for example, in modeling preferences and decision-making as well as potentially identifying unconscious attitudes.

Researchers at the University of Helsinki and University of Copenhagen investigated whether a computer would be able to identify the facial features we consider attractive and, based on this, create new images matching our criteria. The researchers used artificial intelligence to interpret brain signals and combined the resulting brain-computer interface with a generative model of artificial faces. This enabled the computer to create facial images that appealed to individual preferences.

"In our previous studies, we designed models that could identify and control simple portrait features, such as hair color and emotion. However, people largely agree on who is blond and who smiles. Attractiveness is a more challenging subject of study, as it is associated with cultural and psychological factors that likely play unconscious roles in our individual preferences. Indeed, we often find it very hard to explain what it is exactly that makes something, or someone, beautiful: Beauty is in the eye of the beholder," says Senior Researcher and Docent Michiel Spapé from the Department of Psychology and Logopedics, University of Helsinki.

Preferences exposed by the brain

Initially, the researchers gave a generative adversarial neural network (GAN) the task of creating hundreds of artificial portraits. The images were shown, one at a time, to 30 volunteers who were asked to pay attention to faces they found attractive while their brain responses were recorded via electroencephalography (EEG).

"It worked a bit like the dating app Tinder: The participants 'swiped right' when coming across an attractive face. Here, however, they did not have to do anything but look at the images. We measured their immediate brain response to the images," Spapé explains.

The researchers analyzed the EEG data with machine learning techniques, connecting individual EEG data through a brain-computer interface to a generative neural network.

"A brain-computer interface such as this is able to interpret users' opinions on the attractiveness of a range of images. By interpreting their views, the AI model interpreting brain responses and the generative neural network modeling the face images can together produce an entirely new face image by combining what a particular person finds attractive," says Academy Research Fellow and Associate Professor Tuukka Ruotsalo, who heads the project.

To test the validity of their modeling, the researchers generated new portraits for each participant, predicting they would find them personally attractive. Testing them in a double-blind procedure against matched controls, they found that the new images matched the preferences of the subjects with an accuracy of over 80%.

"The study demonstrates that we are capable of generating images that match personal preference by connecting an artificial neural network to brain responses. Succeeding in assessing attractiveness is especially significant, as this is such a poignant, psychological property of the stimuli. Computer vision has thus far been very successful at categorizing images based on objective patterns. By bringing in brain responses to the mix, we show it is possible to detect and generate images based on psychological properties, like personal taste," Spapé explains.

Recommended article

Potential for exposing unconscious attitudes

Ultimately, the study may benefit society by advancing the capacity for computers to learn and increasingly understand subjective preferences, through interaction between AI solutions and brain-computer interfaces.

"If this is possible in something that is as personal and subjective as attractiveness, we may also be able to look into other cognitive functions such as perception and decision-making. Potentially, we might gear the device towards identifying stereotypes or implicit bias and better understand individual differences," says Spapé.

The study was published in the IEEE Transactions in Affective Computing journal.

Subscribe to our newsletter

Related articles

Neuroprosthesis decodes speech for paralyzed man

Neuroprosthesis decodes speech for paralyzed man

Researchers have developed a "speech neuroprosthesis" that has enabled a man with severe paralysis to communicate in sentences.

Biomedical research: deep learning outperforms machine learning

Biomedical research: deep learning outperforms machine learning

Deep-learning methods have the potential to offer substantially better results, generating superior representations for characterizing the human brain.

A computer reads and predicts thoughts

A computer reads and predicts thoughts

Researchers at the University of Helsinki have developed a technique in which a computer models visual perception by monitoring human brain signals.

BCI training reduces phantom limb pain

BCI training reduces phantom limb pain

Scientists used brain-computer-interface to train the brains of patients to reduce phantom-hand pain.

Neural networks: artificial brains need sleep too

Neural networks: artificial brains need sleep too

States that resemble sleep-like cycles in simulated neural networks quell the instability that comes with uninterrupted self-learning in artificial analogs of brains.

Chatbots could train our mental condition

Chatbots could train our mental condition

Technology will play an increasingly social and even emotional role in our lives. Virtual conversations lead to more self-compassion.

Virtual reality used in creative arts therapies

Virtual reality used in creative arts therapies

Virtual reality is an emerging as a tool in creative arts therapies. Now, researchers examined the differences in prefrontal cortex activation between two distinct drawing tasks in VR.

AI predicts behavior

AI predicts behavior

An artificial neural network designed by an international team involving UCL can translate raw data from brain activity, paving the way for new discoveries and a closer integration between technology and the brain.

The next generation of brain-computer interfaces

The next generation of brain-computer interfaces

Future brain-computer interface systems employ a network of independent, wireless microscale neural sensors to record and stimulate brain activity.

Popular articles

Subscribe to Newsletter