Brain-on-a-chip would need little training

A neural network that mimics the biology of the brain can be loaded onto a microchip for faster and more efficient artificial intelligence.

Photo
Advances in artificial intelligence technology is leading to the development of neural networks that mimic the biology of the brain.
Source: 2021 KAUST

A biomimicking "spiking" neural network on a microchip has enabled KAUST researchers to lay the foundation for developing more efficient hardware-based artificial intelligence computing systems.

Artificial intelligence technology is developing rapidly, with an explosion of new applications across advanced automation, data mining and interpretation, healthcare and marketing, to name a few. Such systems are based on a mathematical artificial neural network (ANN) composed of layers of decision-making nodes. Labeled data is first fed into the system to "train" the model to respond a certain way, then the decision-making rules are locked in and the model is put into service on standard computing hardware.

While this method works, it is a clunky approximation of the far more complex, powerful and efficient neural network that actually makes up our brains. “An ANN is an abstract mathematic model that bears little resemblance to real nervous systems and requires intensive computing power,” says Wenzhe Guo, a Ph.D. student in the research team. “A spiking neural network, on the other hand, is constructed and works in the same way as the biological nervous system and can process information in a faster and more energy-efficient way.”

Spiking neural networks (SNNs) emulate the structure of the nervous system as a network of synapses that transmit information via ion channels in the form of action potential, or spikes, as they occur. This event-driven behavior, implemented mathematically as a "leaky integrate-and-fire model," makes SNNs very energy efficient. Plus, the structure of interconnected nodes provides a high degree of parallelization, which further boosts processing power and efficiency. It also lends itself to implementation directly in computing hardware as a neuromorphic chip.

“We used a standard low-cost FPGA microchip and implemented a spike-timing-dependent plasticity model, which is a biological learning rule discovered in our brain,” says Guo.

Importantly, this biological model does not need teaching signals or labels, allowing the neuromorphic computing system to learn real-world data patterns without training. “Since SNN models are very complex, our main challenge was to tailor the neural network settings for optimal performance,” says Guo. “We then designed the optimal hardware architecture considering a balance of cost, speed and energy consumption.”

The team’s brain-on-a-chip proved to be more than 20 times faster and 200 times more energy efficient than other neural network platforms. “Our ultimate goal is to build a compact, fast and low-energy brain-like hardware computing system. The next step is to improve the design and optimize product packaging, miniaturize the chip and customize it for various industrial applications through collaboration,” Guo says.

Subscribe to our newsletter

Related articles

Smart biomarkers to empower drug development

Smart biomarkers to empower drug development

Researchers aim to speed up developing drugs against brain diseases through cutting-edge technology. They are generating an innovative technology platform based on high-density microelectrode arrays and 3D networks of human neurons.

An AI-inspired theory of dreaming

An AI-inspired theory of dreaming

The overfitted brain: Our dreams' weirdness might be why we have them, argues a researchers in new theory of dreaming.

Memory abilities to make neural networks less 'forgetful'

Memory abilities to make neural networks less 'forgetful'

AI experts report that they have successfully addressed a major obstacle to increasing AI capabilities.

Neural networks: artificial brains need sleep too

Neural networks: artificial brains need sleep too

States that resemble sleep-like cycles in simulated neural networks quell the instability that comes with uninterrupted self-learning in artificial analogs of brains.

Neuroprosthesis decodes speech for paralyzed man

Neuroprosthesis decodes speech for paralyzed man

Researchers have developed a "speech neuroprosthesis" that has enabled a man with severe paralysis to communicate in sentences.

AI improves speech recognition in hearing aid

AI improves speech recognition in hearing aid

In noisy environments, it is difficult for hearing aid or hearing implant users to understand their conversational partner. Artificial intelligence could solve this problem.

COVID-19: AIs shortcuts lead to misdiagnosis

COVID-19: AIs shortcuts lead to misdiagnosis

Researchers discovered that AI models have a tendency to look for shortcuts. In the case of AI-assisted disease detection, these shortcuts could lead to diagnostic errors if deployed in clinical settings.

AI makes great microscopes better than ever

AI makes great microscopes better than ever

Machine learning helps some of the best microscopes to see better, work faster, and process more data.

Smart system detects errors when medication is self-administered

Smart system detects errors when medication is self-administered

Many patients use their inhalers and insulin pens wrong. Researchers have developed a system to reduce those numbers for some types of medications.

Popular articles

Subscribe to Newsletter