(From left) Professor Dean Ho, Associate Professor Edward Chow, and Dr Agata...
(From left) Professor Dean Ho, Associate Professor Edward Chow, and Dr Agata Blasiak worked with their collaborators to derive an optimal combination of available therapies against SARS-CoV-2 using the IDentif.AI platform.
Source: National University of Singapore

COVID-19: AI platform finds best combination of available therapies

A team of researchers from the National University of Singapore (NUS) has utilised a ground-breaking artificial intelligence (AI) platform to derive an optimal combination of available therapies against SARS-CoV-2, the cause of COVID-19. Their results showed that the optimal drug therapy was a combination of the drugs remdesivir, ritonavir, and lopinavir at specific doses.

Remdesivir is a broad antiviral medication that was recently approved by the United States Food and Drug Administration as a treatment for COVID-19. The team showed that a combination of remdesivir with ritonavir and lopinavir led to a treatment that was 6.5 times more effective than the limited effects of remdesivir alone. Ritonavir and lopinavir are drugs used to treat patients with human immunodeficiency virus (HIV), but according to the NUS team’s study, and clinical trials in China, Europe, and United States, the two drugs showed little effects on their own against COVID-19. The team also showed that hydroxychloroquine and azithromycin, which are drugs considered as promising treatment options at the time of the team’s experiments conducted in April of this year, were relatively ineffective as treatment options for COVID-19.

The research team was co-led by Professor Dean Ho, Director of The N.1 Institute for Health and Institute for Digital Medicine (WisDM) at NUS, and they used their platform known as ‘IDentif.AI’ (Optimising Infectious Disease Combination Therapy with Artificial Intelligence) to investigate 12 potential drug candidates, representing over 530,000 possible drug combinations. The identification of this optimal drug combination was completed within two weeks, cutting down the number of tests typically needed by hundreds of thousands.

The work was a collaboration between NUS – including researchers from the Cancer Science Institute of Singapore and Department of Pharmacology at NUS - and researchers from Osmosis (Knowledge Diffusion), and Shanghai Jiao Tong University.

Finding more effective drug combinations faster

This study used patient-derived, live SARS-CoV-2 to test a 12-drug set. These drugs are: remdesivir, favipiravir, lopinavir, ritonavir (ritonavir and lopinavir are given together for HIV), oseltamivir, hydroxychloroquine, chloroquine, azithromycin, losartan, teicoplanin, ribavirin, and dexamethasone. The drugs used are also utilised in many of the studies that are currently in clinical trials for COVID-19 treatment.

In traditional drug screening, a 12-drug set such as this, with 10 different doses studied for each drug, represents a parameter space of one trillion possible combinations. Using IDentif.AI, the research team was able to determine that testing only three different dose levels were needed for each drug. While this still represents 531,000 possible combinations, the team was also able to reduce the numbers of experiments needed by three orders of magnitude and complete the entire study within two weeks.

“IDentif.AI is unlike traditional AI as we do not use pre-existing data or in silico modeling to train algorithms and predict drug combinations,” said Prof Ho, who is also the Head of the NUS Department of Biomedical Engineering.

"IDentif.AI is unique in that we obtain the data that we need through carefully designed experiments in order to arrive at a ranked list of actionable and optimised regimens."

Dean Ho

Given the diversity of different drug candidates that are being studied, and the need to evaluate different permutations of drug combinations and the respective doses, much of the data needed in order to optimise drug development simply does not exist. “IDentif.AI is unique in that we obtain the data that we need through carefully designed experiments in order to arrive at a ranked list of actionable and optimised regimens,” added Prof Ho.

While AI is being actively explored in the area of therapeutics, current efforts are largely directed towards drug discovery and repurposing. However, repurposed drug candidates are unlikely to be effective on their own. “With the emergence of an outbreak, there is not enough time to develop a new drug. At the same time, drug repurposing against aggressive infectious diseases is challenging, since truly optimising outcomes often involves efficiently creating combination therapies. As each day passes, more patients will be infected and the numbers can climb rapidly to overburden healthcare systems and economies,” explained Dr Agata Blasiak, a Senior Research Fellow in Prof Ho’s team who is the co-first author of the paper.

IDentif.AI addresses this problem by interrogating extraordinarily large parameter spaces and pinpointing the best possible combinations to give to patients. This can be accomplished rapidly. “Depending on the assay and the viral pathogen, this can all be done within two weeks. In the future, IDentif.AI may also help the community avoid suboptimal drug combinations,” added Dr Blasiak.

Key results

Remdesivir, lopinavir, and ritonavir at specific doses represents the top ranked combination, resulting in an almost total inhibition of infection. While remdesivir alone was the best performing single drug relative to the other drugs, the optimal combination increased the inhibition efficiency by 6.5 times. IDentif.AI was able to harness an unforeseen interaction between remdesivir, lopinavir, and ritonavir that experimentally shown to markedly increase efficacy. Therefore, IDentif.AI may be leveraged to realise unexpected drug combinations based on drugs that are ineffective as monotherapies in order to optimise treatment.

In addition, the study found that hydroxychloroquine and azithromycin, another widely studied combination, was shown to be relatively ineffective. This is different from the vast majority of previous studies which showed this to be an effective combination against SARS-CoV-2 in vitro. However, these studies used very high doses that would be very toxic for patients. Recent clinical results have suggested that more patients die with this combination compared to standard treatment.

Next steps

The results of this study have demonstrated the power of IDentif.AI to rapidly discover optimal drug combinations for infectious diseases.

To provide broader insight into the extensive range of combinations explored by this study, the research team has developed IDentif.AI Online, an interactive resource that allows users to build different drug combinations online and observe corresponding efficacy and safety data for research purposes. This resource will be updated continuously as additional IDentif.AI studies are conducted with additional therapies and viral strains.

The team is also preparing to expand IDentif.AI towards locally available therapies to develop novel combinations that can be rapidly deployed and administered easily, and may also use it to find optimal treatments against other infectious diseases in future. “With IDentif.AI, we will always be ready to rapidly find optimal therapeutic solutions for the next outbreak,” concluded Prof Ho.

The results of the study were published in Bioengineering and Translational Medicine.

Subscribe to our newsletter

Related articles

Artificial intelligence rapidly computes protein structures

Artificial intelligence rapidly computes protein structures

Scientists have created a deep learning method, RoseTTAFold, to provide access to highly accurate protein structure prediction.

A robot scientist is ready for drug discovery

A robot scientist is ready for drug discovery

The robot scientist Eve has been assembled and is now operating at Chalmers University of Technology. Eve’s f​irst mission is to identify and test drugs against Covid-19.​

AI makes strides in search for COVID-19 treatments

AI makes strides in search for COVID-19 treatments

A deep learning model that can predict how human genes and medicines will interact has identified at least 10 compounds that may hold promise as treatments for COVID-19.

Network medicine makes drug repurposing effective

Network medicine makes drug repurposing effective

Artificial intelligence can increase the effectiveness of drug repositioning or repurposing research.

Harnessing AI to discover new drugs

Harnessing AI to discover new drugs

Artificial intelligence can recognise the biological activity of natural products in a targeted manner.

Smart biomarkers to empower drug development

Smart biomarkers to empower drug development

Researchers aim to speed up developing drugs against brain diseases through cutting-edge technology. They are generating an innovative technology platform based on high-density microelectrode arrays and 3D networks of human neurons.

AI enhances efficacy of sleep disorder treatments

AI enhances efficacy of sleep disorder treatments

Based on 20,000 nights of sleep, researchers have developed an algorithm that can improve the diagnosis, treatment and overall understanding of sleep disorders.

COVID-19: AIs shortcuts lead to misdiagnosis

COVID-19: AIs shortcuts lead to misdiagnosis

Researchers discovered that AI models have a tendency to look for shortcuts. In the case of AI-assisted disease detection, these shortcuts could lead to diagnostic errors if deployed in clinical settings.

Microfluidics: efficiently smuggling drugs into cells

Microfluidics: efficiently smuggling drugs into cells

Progressive Mechanoporation makes it possible to mechanically disrupt the membranes of cells for a short time period and let drugs or genes inside cells.

Popular articles

Subscribe to Newsletter