Images in 62-year-old man with primary adenocarcinoma. (a, b) Posteroanterior...
Images in 62-year-old man with primary adenocarcinoma. (a, b) Posteroanterior (PA) digital chest radiographs. (a) Without deep convolutional neural network (DCNN) software assistance, the three readers (readers 10, 11, and 12) interpreted this image as a normal chest radiograph. (b) According to the DCNN's suggestion (dotted circle), all readers were able to identify a true nodule (yellow circle). (c) Axial CT image obtained on the same day shows a 25-mm solid mass in the apical segment of the right upper lobe (arrow).
Source: Radiological Society of North America

Deep learning assists in detecting malignant lung cancers

Radiologists assisted by deep learning based software were better able to detect malignant lung cancers on chest X-rays, according to research published in the journal Radiology. “The average sensitivity of radiologists was improved by 5.2% when they re-reviewed X-rays with the deep-learning software,” said Byoung Wook Choi, M.D., Ph.D., professor at Yonsei University College of Medicine, and cardiothoracic radiologist in the Department of Radiology in the Yonsei University Health System in Seoul, Korea. “At the same time, the number of false-positive findings per image was reduced.”

Dr. Choi said the characteristics of lung lesions including size, density, and location make the detection of lung nodules on chest X-rays more challenging. However, machine learning methods, including the implementation of deep convolutional neural networks (DCNN), have helped to improve detection.

Deep learning is a type of artificial intelligence that allows computers to complete tasks based on existing relationships of data. A DCNN, modeled after brain structure, employs multiple hidden layers and patterns to classify images.

In this retrospective study, radiologists randomly selected a total of 800 X-rays from four participating centers, including 200 normal chest scans and 600 with at least one malignant lung nodule confirmed by CT imaging or pathological examination (50 normal and 150 with cancer from each institution). There were 704 confirmed malignant nodules in the lung cancer X-rays (78.6% primary lung cancers and 21.4% metastases). The majority (56.1%) of the nodules were between 1cm and 2cm, while 43.9% were between 2cm and 3cm.

A second group of radiologists, including three from each institution, interpreted the selected chest X-rays with and without cancerous nodules. The readers then re-read the same X-rays with the assistance of DCNN software, which was trained to detect lung nodules.

The average sensitivity, or the ability to detect an existing cancer, improved significantly from 65.1% for radiologists reading alone to 70.3% when aided by the DCNN software. The number of false positives—incorrectly reporting that cancer is present—per X-ray declined from 0.2 for radiologists alone to 0.18 with the help of the software. “Computer-aided detection software to detect lung nodules has not been widely accepted and utilized because of high false positive rates, even though it provides relatively high sensitivity,” Dr. Choi said. “DCNN may be a solution to reduce the number of false positives.”

Subscribe to our newsletter

Related articles

Google-powered AI spots breast cancer

Google-powered AI spots breast cancer

A computer algorithm has been shown to be as effective as human radiologists in spotting breast cancer from x-ray images.

AI detects even the smallest metastases

AI detects even the smallest metastases

Researchers have developed a new algorithm that enables automated detection of metastases at the level of single disseminated cancer cells in whole mice.

ConvPath software uses AI to identify cancer cells

ConvPath software uses AI to identify cancer cells

A software tool uses artificial intelligence to recognize cancer cells from digital pathology images — giving clinicians a powerful way of predicting patient outcomes.

Deep learning identifies molecular patterns of cancer

Deep learning identifies molecular patterns of cancer

An AI platform can analyze genomic data extremely quickly, picking out key patterns to classify different types of colorectal tumors and improve the drug discovery process.

Cancer: AI identifyies patients for immunotherapy

Cancer: AI identifyies patients for immunotherapy

Stomach and colorectal cancer: Identifying patients at an early stage who are suitable for artificial intelligence immunotherapy.

Algorithms for liver surgery make operations more safe

Algorithms for liver surgery make operations more safe

Researcher have developed algorithms that analyze patients‘ imaging data and calculate surgical risks. This makes liver cancer surgery safer and easier to plan.

Chatbot ‘Gene' to help with hereditary cancer

Chatbot ‘Gene' to help with hereditary cancer

Myriad Genetics, Inc. announced a new collaboration with OptraHEALTH to implement a cognitive chatbot named Gene to provide genetic and financial assistance information to prospective patients.

Lung cancer: AI could predict risk of recurrence

Lung cancer: AI could predict risk of recurrence

Computer scientists working with pathologists have trained an AI tool to determine which patients with lung cancer have a higher risk of their disease coming back after treatment.

AI distinguishes pneumonia from COVID-19

AI distinguishes pneumonia from COVID-19

Researchers have developed a predictive artificial intelligence model that can tell the difference between healthy patients, those who are ill with pneumonia and those who have COVID-19, from chest X-rays.

Popular articles