Schematic diagram of the proposed multichannel deep neural network model...
Schematic diagram of the proposed multichannel deep neural network model analyzing multiscale functional brain connectome for a classification task. rsfMRI = resting-state functional MRI.
Source: RSNA

Deep learning boosts MRI detection of ADHD

Deep learning can boost the power of MRI in predicting attention deficit hyperactivity disorder (ADHD), according to a study published in Radiology: Artificial Intelligence.

Increasingly, the connectome is regarded as key to understanding brain disorders like ADHD. According to the National Survey of Children’s Health, approximately 9.4% of U.S. children, ages 2 to 17 years (6.1 million) in 2016 have been diagnosed with ADHD. The disorder cannot yet be definitively diagnosed in an individual child with a single test or medical imaging exam. Instead, ADHD diagnosis is based on a series of symptoms and behavior-based tests.

Brain MRI has a potential role in diagnosis, as research suggests that ADHD results from some type of breakdown or disruption in the connectome. The connectome is constructed from spatial regions across the MR image known as parcellations. Brain parcellations can be defined based on anatomical criteria, functional criteria, or both. The brain can be studied at different scales based on different brain parcellations.

Prior studies have focused on the so-called single-scale approach, where the connectome is constructed based on only one parcellation. For the new study, researchers from the University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center took a more comprehensive view. They developed a multi-scale method, which used multiple connectome maps based on multiple parcellations.

Improved diagnostic accuracy could aid in early interventions

To build the deep learning model, the researchers used data from the NeuroBureau ADHD-200 dataset. The model used the multi-scale brain connectome data from the project’s 973 participants along with relevant personal characteristics, such as gender and IQ.

The multi-scale approach improved ADHD detection performance significantly over the use of a single-scale method. “Our results emphasize the predictive power of the brain connectome,” said study senior author Lili He, PhD, from the Cincinnati Children’s Hospital Medical Center. “The constructed brain functional connectome that spans multiple scales provides supplementary information for the depicting of networks across the entire brain.”

By improving diagnostic accuracy, deep-learning-aided MRI-based diagnosis could be critical in implementing early interventions for ADHD patients. Approximately 5% of American pre-school and school-aged children have been diagnosed with ADHD. These children and adolescents face a high risk of failing in academic study and building social relationships, which can result in financial hardship for families and create a tremendous burden on society.

The approach also has potential beyond ADHD, according to Dr. He. “This model can be generalized to other neurological deficiencies,” she said. “We already use it to predict cognitive deficiency in pre-term infants. We scan them soon after birth to predict neurodevelopmental outcomes at two years of age.”

In the future, the researchers expect to see the deep learning model improve as it is exposed to larger neuroimaging datasets. They also hope to better understand the specific breakdowns or disruptions in the connectome identified by the model that are associated with ADHD.

Subscribe to our newsletter

Related articles

AI may help brain cancer patients avoid biopsy

AI may help brain cancer patients avoid biopsy

Brain cancer patients in the coming years may not need to go under the knife to help doctors determine the best treatment for their tumors.

AI for very young brains

AI for very young brains

Scientists have developed an innovative new technique that uses artificial intelligence to better define the different sections of the brain in newborns during a magnetic resonance imaging (MRI) exam.

AI may alter how doctors treat depression

AI may alter how doctors treat depression

Artificial intelligence may soon play a critical role in choosing which depression therapy is best for patients.

AI & MRI look into the genome of brain tumors

AI & MRI look into the genome of brain tumors

Researcher have developed a computer method that uses MRI and machine learning to rapidly forecast genetic mutations in glioma tumors,

Facial recognition software IDs individuals from MRI scans

Facial recognition software IDs individuals from MRI scans

Though identifying data typically are removed from medical image files before they are shared for research, a study finds that this may not be enough to protect patient privacy.

AI rivals radiologists at detecting brain hemorrhages

AI rivals radiologists at detecting brain hemorrhages

An algorithm did better than experts radiologists at finding tiny brain hemorrhages in head scans — an advance that one day may help doctors treat patients with strokes.

‘Uncanny Valley’: Brain network evaluates robot likeability

‘Uncanny Valley’: Brain network evaluates robot likeability

Scientists have identified mechanisms in the human brain that could help explain the the unsettling feeling we get from robots and virtual agents that are too human-like.

AI may help reduce gadolinium dose in MRI

AI may help reduce gadolinium dose in MRI

Researchers are using artificial intelligence to reduce the dose of a contrast agent that may be left behind in the body after MRI exams, according to a study presented at RSNA.

Creating a piece of mind

Creating a piece of mind

New 3D printing technique enables faster, better, and cheaper models of patient-specific medical data for research and diagnosis.

Popular articles