Biomedical research: deep learning outperforms machine learning

Biomedical research: deep learning outperforms machine learning

Compared to standard machine learning models, deep learning models are largely superior at discerning patterns and discriminative features in brain imaging, despite being more complex in their architecture, according to a new study by Georgia State University.

Advanced biomedical technologies such as structural and functional magnetic resonance imaging (MRI and fMRI) or genomic sequencing have produced an enormous volume of data about the human body. By extracting patterns from this information, scientists can glean new insights into health and disease. This is a challenging task, however, given the complexity of the data and the fact that the relationships among types of data are poorly understood.

Deep learning, built on advanced neural networks, can characterize these relationships by combining and analyzing data from many sources. At the Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State researchers are using deep learning to learn more about how mental illness and other disorders affect the brain.

Although deep learning models have been used to solve problems and answer questions in a number of different fields, some experts remain skeptical. Recent critical commentaries have unfavorably compared deep learning with standard machine learning approaches for analyzing brain imaging data.

However, as demonstrated in the study, these conclusions are often based on pre-processed input that deprive deep learning of its main advantage—the ability to learn from the data with little to no preprocessing. Anees Abrol, research scientist at TReNDS and the lead author on the paper, compared representative models from classical machine learning and deep learning, and found that if trained properly, the deep learning methods have the potential to offer substantially better results, generating superior representations for characterizing the human brain.

“We compared these models side-by-side, observing statistical protocols so everything is apples to apples. And we show that deep learning models perform better, as expected,” said co-author Sergey Plis, director of machine learning at TReNDS and associate professor of computer science.

Plis said there are some cases where standard machine learning can outperform deep learning. For example, diagnostic algorithms that plug in single-number measurements such as a patient’s body temperature or whether the patient smokes cigarettes would work better using classical machine learning approaches.

“If your application involves analyzing images or if it involves a large array of data that can’t really be distilled into a simple measurement without losing information, deep learning can help,” Plis said.. “These models are made for really complex problems that require bringing in a lot of experience and intuition.”

"In our study we looked at sample sizes from 100 to 10,000 and in all cases the deep learning approaches were doing better."

Vince Calhoun

The downside of deep learning models is they are “data hungry” at the outset and must be trained on lots of information. But once these models are trained, said co-author Vince Calhoun, director of TReNDS and Distinguished University Professor of Psychology, they are just as effective at analyzing reams of complex data as they are at answering simple questions. “Interestingly, in our study we looked at sample sizes from 100 to 10,000 and in all cases the deep learning approaches were doing better,” he said.

Another advantage is that scientists can reverse analyze deep learning models to understand how they are reaching conclusions about the data. As the published study shows, the trained deep learning models learn to identify meaningful brain biomarkers.

“These models are learning on their own, so we can uncover the defining characteristics that they’re looking into that allows them to be accurate,” Abrol said. “We can check the data points a model is analyzing and then compare it to the literature to see what the model has found outside of where we told it to look.”

The researchers envision that deep learning models are capable of extracting explanations and representations not already known to the field and act as an aid in growing our knowledge of how the human brain functions. They conclude that although more research is needed to find and address weaknesses of deep-learning models, from a mathematical point of view, it’s clear these models outperform standard machine learning models in many settings.

“Deep learning’s promise perhaps still outweighs its current usefulness to neuroimaging, but we are seeing a lot of real potential for these techniques,” Plis said.

The research was published in Nature Communications.

Subscribe to our newsletter

Related articles

Machine learning algorithm detects early stages of Alzheimer's

Machine learning algorithm detects early stages of Alzheimer's

An artificial intelligence-based detects early stages of Alzheimer’s through functional magnetic resonance imaging.

How AI can improve medical imaging

How AI can improve medical imaging

AI offers not only the possibility of better detection of a tumor, a skin lesion or some other indication but also can improve accuracy and efficiency for radiologists.

5 ways AI is used against COVID-19

5 ways AI is used against COVID-19

Find out more about how scientists and physician are using AI to make contributions in the fight against the coronavirus.

Using deep learning to diagnose autism

Using deep learning to diagnose autism

Researchers have applied these artificial intelligence techniques to autism diagnosis.

Image fusion method uses AI to improve outcomes

Image fusion method uses AI to improve outcomes

Researchers have developed a new "multi-modal" image fusion method based on supervised deep learning that enhances image clarity, reduces redundant image features and supports batch processing.

Integrating imaging with deep neural networks

Integrating imaging with deep neural networks

Neural network framework may increase radiologist's confidence in assessing the type of lung cancer on CT scans, informing individualized treatment planning.

Deep learning-based image segmentation

Deep learning-based image segmentation

Scientists have presented a new method for configuring self-learning algorithms for a large number of different imaging datasets – without the need for specialist knowledge or very significant computing power.

Deep learning tool measures volume of cerebral ventricles

Deep learning tool measures volume of cerebral ventricles

Researchers have developed an AI tool that can measure the volume of cerebral ventricles on MRIs in children within about 25 minutes.

Deep learning platform accurately diagnoses dystonia

Deep learning platform accurately diagnoses dystonia

Researchers have developed a unique diagnostic tool that can detect dystonia from MRI scans, the first technology of its kind to provide an objective diagnosis of the disorder.

Popular articles

Subscribe to Newsletter