Machine learning fuels personalised cancer medicine

Each tumour—each patient—accumulates many mutations, but not all of them are relevant for the development of cancer. Researchers at IRB Barcelona have developed a tool, based on machine learning methods, that evaluates the potential contribution of all possible mutations in a gene in a given type of tumour to the development and progression of cancer.

Photo
Contribution of mutational features to the classification of all EGFR driver and passenger mutations in lung adenocarcinomas and glioblastomas.
Source: IRB Barcelona

In previous work that is already available to the scientific and medical community, the laboratory developed a method to identify those genes responsible for the onset, progression, and spread of cancer. "BoostDM goes further: it simulates each possible mutation within each gene for a specific type of cancer and indicates which ones are key in the cancer process. This information helps us to understand how a tumour is caused at the molecular level and it can facilitate medical decisions regarding the most appropriate therapy for a patient," explains Dr. Núria López-Bigas, head of the Biomedical Genomics lab. In addition, the tool will contribute to a better understanding of the initial processes of tumour development in different tissues.

The new tool has been integrated into the IntOGen platform, developed by the same group and designed to be used by the scientific and medical community in research projects, and into the Cancer Genome Interpreter, also developed by this group and which is more focused on clinical decision-making by medical oncologists.

BoostDM currently works with the mutational profiles of 28,000 genomes analysed from 66 types of cancer. The scope of BoostDM will grow as a result of the foreseeable increase in publicly accessible cancer genomes.

An advance founded on evolutionary biology

To identify the mutations involved in cancer, the scientists based themselves on a key concept in evolution, namely positive selection. Mutations that drive the growth and development of cancer are found in higher numbers in distinct samples, compared to those that would occur randomly.

"We started from the premise that we only get to observe some mutations because the tumour cells with this mutation guide the development of the tumour, and we questioned what distinguishes these mutations from other possible mutations, " says Dr. Ferran Muiños, postdoctoral researcher and co-first author of the work. "Doing this analysis manually would be excessively laborious, but there are computational strategies that allow it to be organised systematically and efficiently," he adds.

From the data, the proposed method learns what attributes are distinctive of the mutations that favour the development of cancer and this information is useful for the development of new therapeutic approaches.

A computational model for each type of cancer

The tool that the researchers have developed has already generated 185 models to identify mutations in a specific gene in a given type of cancer. For example, it has produced a model that has identified all the possible mutations in the EGFR gene that trigger tumour development in some lung cancers, another model for the same gene in cases of glioblastoma (a type of cancer that affects the brain), etc.

As sequencing data on tumours become publicly accessible, it can be incorporated into the system, allowing it to generate new models for all cancer genes in the coming years.

When a model has been developed, researchers can interrogate each possible mutation of a cancer gene in a tissue type (in a process known as saturation mutagenesis) and determine whether it is relevant for the development of the disease. This process produces a map of key mutations, which is valuable for both cancer research and personalised cancer medicine, and medical decision-making. The authors have demonstrated that this prediction model tool, BoostDM, is more efficient and accurate than experimental approaches.

Subscribe to our newsletter

Related articles

A pen to pin down the fringes of cancer

A pen to pin down the fringes of cancer

The MasSpec Pen has shown to accurately differentiate healthy and cancerous tissue from banked pancreas samples during surgery.

Deep learning identifies molecular patterns of cancer

Deep learning identifies molecular patterns of cancer

An AI platform can analyze genomic data extremely quickly, picking out key patterns to classify different types of colorectal tumors and improve the drug discovery process.

Machine learning improves diagnostics of head and neck cancers

Machine learning improves diagnostics of head and neck cancers

Researchers used artificial intelligence to develop a new classification method which identifies the primary origins of cancerous tissue based on chemical DNA changes.

AI picks up mutations in colorectal cancers

AI picks up mutations in colorectal cancers

A deep learning algorithm picks up molecular pathways and the development of key mutations more accurately than existing methods.

Pancreatic “organoids” mimic the real thing

Pancreatic “organoids” mimic the real thing

Studying these organoids could help researchers develop and test new treatments for pancreatic cancer.

Machine learning helps diagnose leukemia

Machine learning helps diagnose leukemia

Researchers at the University of Bonn show how artificial intelligence improves the evaluation of blood analysis data.

AI assesses metastatic potential in skin cancers

AI assesses metastatic potential in skin cancers

Using a deep learning algorithm, researchers have developed a way to accurately predict which skin cancers are highly metastatic.

Artificial intelligence shortcuts introduce bias in cancer treatment

Artificial intelligence shortcuts introduce bias in cancer treatment

AI tools models are a powerful tool in cancer treatment. However, unless these algorithms are properly calibrated, they can sometimes make inaccurate or biased predictions.

Immunotherapy response studied in body-on-a-chip models

Immunotherapy response studied in body-on-a-chip models

Clinicians are using patient-specific tumor 'organoid' models as a preclinical companion platform to better evaluate immunotherapy treatment for appendiceal cancer.

Popular articles

Subscribe to Newsletter