To improve the prediction and identification of stem-like cancer cells, Prof....
To improve the prediction and identification of stem-like cancer cells, Prof. Euisik Yoon’s group developed a method that is 3.5 times faster than the standard approach. Image shows an ilustration of growing cancer tumor.
Source: University of Michigan

Machine learning improves breast cancer research

Researchers at University of Michigan have developed a new, faster method to identify cancer stem-like cells (CSCs), which could help improve the effectiveness of cancer treatments.

CSCs can seed and develop tumors in metastatic sites, causing cancer to relapse in patients after treatment. They are also generally resistant to chemotherapy and radiotherapy, so therapeutics that directly target CSCs may greatly improve the success of cancer treatments. However, CSCs vary widely among and even within patients, making it difficult to develop treatments.

CSCs are identified by their ability to grow to tumorspheres in a harsh suspension environment. As such, single-cell suspension culture has proven to be an effective method to identify and study CSCs in a specific patient. In addition, microfluidics has vastly improved this method, for it allows single cells to be isolated reliably in high throughput, which helps reduce false identification of CSCs.

But even with microfluidics, the process can take up to two weeks. This is not ideal, for the risk of mishandling and cell contamination increases the longer the experiment runs.

To address these issues, Yoon’s group developed and trained a convolutional neural network (CNN), a machine learning method for image classification, to predict single-cell derived tumorsphere formation. “Using bright field images, we can predict drug response much earlier from common morphological features of cell viability by machine learning algorithms,” Prof. Euisik Yoon’s says.

The model was trained to correlate the cellular images of breast cancer tumorspheres in micro-wells on Day 4 with their final size on Day 14. Using Day 2 images, this model predicted the formation of tumorspheres with 87.3% accuracy. It had 88.1% accuracy with Day 4 images. In addition, with Day 4 images, the model estimated the rate of tumorsphere formation to be 17.8%, which was close to the true rate of 17.6% on Day 14.

This method can help advance the study of CSCs in breast cancer, improving targeted treatments with potential similar success in other types of cancer. The next step is to see if the model can be widely applied to other forms of cancer. “The combination of single-cell analysis and machine learning will create strong synergistic effects to expedite bio-discovery,” says Yu-Chih Chen, an Assistant Research Scientist and the first author of the paper. “As different types of cancer cells may have different proliferation rates, we need to normalize and rearrange the model so it can be applied more generically and be more dependable in clinical applications.”

Subscribe to our newsletter

Related articles

AI challenge aims to improve mammography accuracy

AI challenge aims to improve mammography accuracy

AI techniques, used in combination with the evaluation of expert radiologists, improve the accuracy in detecting cancer using mammograms.

An AI that ‘thinks’ like humans

An AI that ‘thinks’ like humans

Creating human-like AI is about more than mimicking human behaviour – technology must also be able to process information, or ‘think’, if it is to be fully relied upon.

Researchers psychoanalyse artificial intelligence

Researchers psychoanalyse artificial intelligence

We can run tests and experiments, but we cannot always predict and understand why AI does what it does.

The progress and risks of artificial intelligence

The progress and risks of artificial intelligence

Artificial intelligence has reached a critical turning point in its evolution, according to an international panel of experts.

A pen to pin down the fringes of cancer

A pen to pin down the fringes of cancer

The MasSpec Pen has shown to accurately differentiate healthy and cancerous tissue from banked pancreas samples during surgery.

Reconstruction of 3D micro-CT images with the help of machine learning

Reconstruction of 3D micro-CT images with the help of machine learning

Researchers have used machine learning to help reconstruct three-dimensional micro-CT images of fibrous materials.

Machine learning fuels personalised cancer medicine

Machine learning fuels personalised cancer medicine

A tool, based on machine learning methods, that evaluates the potential contribution of all possible mutations in a gene in a given type of tumour to the development and progression of cancer.

Deep learning helps visualize X-ray data in 3D

Deep learning helps visualize X-ray data in 3D

Scientists have leveraged artificial intelligence to train computers to keep up with the massive amounts of X-ray data taken at the Advanced Photon Source.

Artificial intelligence shortcuts introduce bias in cancer treatment

Artificial intelligence shortcuts introduce bias in cancer treatment

AI tools models are a powerful tool in cancer treatment. However, unless these algorithms are properly calibrated, they can sometimes make inaccurate or biased predictions.

Popular articles

Subscribe to Newsletter